

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

DESIGN, CONSTRUCTION AND TESTING OF A
PROTOTYPE HOLONOMIC AUTONOMOUS VEHICLE

by

Kirk N. Volland

December 2007

 Thesis Advisor: Richard Harkins
 Second Reader: Peter Crooker

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Design, Construction and Testing of a Prototype
Holonomic Autonomous Vehicle
6. AUTHOR(S) Kirk N. Volland

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

United States Department of Defense (DoD) autonomous vehicle efforts have concentrated research in areas
that support development of unmanned ground and air battlefield vehicles. Little attention has been paid to applying
robotics to automate routine tasks. A robotic solution consisting of a prototype holonomic vehicle is proposed to
search for, detect, and remove debris that could cause foreign object damage (FOD) to turbine-engine aircraft
operated from ships. Holonomic, or omnidirectional, motion was realized by solving the system of equations
governing the vehicle’s motion atop a plane surface. Translational motion without chassis rotation was achieved
through motion control using a single board computer, a pulse width modulation (PWM) and optical isolation circuit,
and a low-cost inertial measurement unit (IMU). Obstacle detection and avoidance was realized by constructing a
microprocessor-controlled scanning ultrasonic sonar detector head and controller circuit. The sonar detector
demonstrated 360º coverage and centimeter resolution. Rudimentary autonomous operation and wireless manual
control via a Java graphical user interface (GUI) were achieved in an indoor environment.

15. NUMBER OF
PAGES

211

14. SUBJECT TERMS Autonomous, Robot, FOD, Foreign Object Damage, Omnidirectional,
Holonomic, Odometry, Ultrasonic Sonar, Aviation Safety

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

DESIGN, CONSTRUCTION AND TESTING OF A
PROTOTYPE HOLONOMIC AUTONOMOUS VEHICLE

Kirk N. Volland

Lieutenant Commander, United States Navy
B.S. in Technical Communication, University of Washington, 1992

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2007

Author: Kirk Volland

Approved by: Richard Harkins
Thesis Advisor

Peter Crooker
Second Reader

James Luscomb
Chairman, Department of Physics

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

United States Department of Defense (DoD) autonomous vehicle efforts have

concentrated research in areas that support development of unmanned ground and air

battlefield vehicles. Little attention has been paid to applying robotics to automate

routine tasks. A robotic solution consisting of a prototype holonomic vehicle is proposed

to search for, detect, and remove debris that could cause foreign object damage (FOD) to

turbine-engine aircraft operated from ships. Holonomic, or omnidirectional, motion was

realized by solving the system of equations governing the vehicle’s motion atop a plane

surface. Translational motion without chassis rotation was achieved through motion

control using a single board computer, a pulse width modulation (PWM) and optical

isolation circuit, and a low-cost inertial measurement unit (IMU). Obstacle detection and

avoidance was realized by constructing a microprocessor-controlled scanning ultrasonic

sonar detector head and controller circuit. The sonar detector demonstrated 360º

coverage and centimeter resolution. Rudimentary autonomous operation and wireless

manual control via a Java graphical user interface (GUI) were achieved in an indoor

environment.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. HISTORIC MILITARY ROBOTIC TASKS AND RESEARCH...............1
B. PROJECT MOTIVATION...3
C. PROBLEM SOLUTION ...4

II. HOLONOMIC MOTION ...7
A. MOTIVATION ..7
B. HOLONOMIC MOTION DEFINITION..7
C. DERIVATION OF EQUATION OF MOTION..8

III. EXPERIMENTAL DESIGN...15
A. MECHANICAL CONSTRUCTION..16

1. Chassis...16
2. Omniwheels ..19

B. PROPULSION AND CONTROL ..19
1. Motors and Motor Controllers ...19
2. PWM and Optoisolation Circuit...20

a. Early Efforts in Pulse Width Modulation of Motor Speed
Signals ...21

b. Crystal Oscillator Circuit ..21
c. Final PWM Circuit using RC Oscillator................................23

C. ELECTRICAL POWER SYSTEM..26
1. Design Goals ...26
2. Electrical System Design Evolution..27
3. Overview of Motor and Electronics Power Busses27
4. Motor Power Bus ...29

a. Motor Power Batteries ..29
b. Interconnect and Charging Panel..29
c. Main Power Panel (MPP) Motor Power Bus Section30
d. Test and Distribution Panel..32

5. Electronics Power Bus ...33
a. Electronics Battery..35
b. AC Power Supply ..35
c. Main Power Panel (MPP) electronics bus section35
d. Test and Distribution Panel..36
e. 12 V Regulator Panel..36
f. 5V Electronics Bus Panel (First-generation)37
g. 5 V DC Buck Switching Regulator Panel38
h. 5V Electronics Bus Panel (Second-generation)44

D. MICROCONTROLLERS...47
1. Z-World BL2600 Single Board Computer47
2. Z-World BL2000 Single Board Computer48
3. Microchip PIC16F690 ...49

 viii

E. COMMUNICATION...50
F. ENVIRONMENTAL SENSORS..51

1. SHARP IR Range Sensors...51
2. Scanning Sonar Sensor Head..54

a. Design Considerations ..54
b. Sonar Mechanical Mounting and Pointing55
c. Function of PIC Microcontroller and Sonar Circuit56

G. POSITIONING SENSORS ...59
1. Wheel Tachometers ...59
2. Inertial Measurement Unit (IMU)..61

IV. SONAR SENSOR HEAD CONTROLLER MICROPROCESSOR
ASSEMBLY LANGUAGE PROGRAM ...65
A. PROGRAM TASKS ..65
B. SONAR CIRCUIT AND PROCESSOR TIMING EXPLANATION.......65
C. PROGRAM FLOW ...66
D. PROGRAM OUTPUT...70

V. THREE WHEEL TACHOMETER MICROPROCESSOR ASSEMBLY
LANGUAGE PROGRAM ..75
A. DESIGN CONSIDERATIONS AND PREVIOUS WORK75
B. TACHOMETER PROBLEM SOLUTION...75
C. PROGRAM FLOW ...77
D. DATA OUTPUT...79

VI. ROBOT OPERATING PROGRAM..83
A. CREATURE’S OPERATING PROGRAM REDESIGN

MOTIVATION ..83
B. OPERATING PROGRAM IMPROVEMENTS...83
C. OPERATING PROGRAM FLOW..84

1. Port Checking and Waypoint Costates ..85
2. I2C Compass and GUI Feedback Costates......................................86
3. Sonar Ranging Costate ..86
4. Obstacle Avoidance Costate..86
5. IR Ranging and Wheel Tachometer Costates87
6. Dead Reckoning (DR) and NavigationCostates88
7. Position Formatting Costate ...88
8. IMU and Heading Hold Costates..88
9. Manual Control Costate ..89
10. Stuck Vehicle Watchdog Costate..89

VII. PULSE WIDTH MODULATION (PWM) CIRCUIT..91
A. EXPERIMENTAL DESIGN...91
B. PWM CIRCUIT EXPERIMENTAL OBSERVATIONS AND

ANALYSIS ...93

VIII. SONAR SENSOR HEAD..97
A. SONAR RANGING PATTERN ...98

 ix

B. SONAR SENSOR HEAD EXPERIMENTAL DESIGN............................99
C. SONAR SENSOR HEAD EXPERIMENTAL OBSERVATIONS103

IX. FUTURE WORK...109
A. FOD DETECTION ..109
B. FOD REMOVAL ...110
C. OPERATING PROGRAM IMPROVEMENTS.......................................110
D. GUI/HUMAN INTERFACE...112
E. NAVIGATION ...113

APPENDIX A – PULSE WIDTH MODULATOR AND OPTICALISOLATION
CIRCUIT ..115

APPENDIX B – ELECTRICAL WIRING COLOR CODES AND LABELS...............119

APPENDIX C – CREATURE OPERATING MANUAL ..121

APPENDIX D – WHEEL TACHOMETER ASSEMBLY LANGUAGE CODE..........127

APPENDIX E – SONAR SENSOR HEAD CONTROLLER ASSEMBLY
LANGUAGE CODE..133

APPENDIX F - DYNAMIC C ROBOT OPERATING CODE147

LIST OF REFERENCES..189

INITIAL DISTRIBUTION LIST ...193

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. iRobot’s PackBot conducting EOD task in Iraq. (From [1])1
Figure 2. MQ-9 Reaper UAV. (From [3])...2
Figure 3. DARPA Urban Challenge Top Three Finishers. (From [5])3
Figure 4. Typical FOD Walkdown aboard USS CARL VINSON (CVN 70). (From

[8])..5
Figure 5. Reference Frames. (After [16])..8
Figure 6. Wheel Position in Earth and Robot Reference Frames....................................10
Figure 7. Diagram of Major Components Installed on Lower Level.15
Figure 8. Diagram of Major Components Installed on Upper Level.16
Figure 9. Bare Chassis with Motors Installed. ..18
Figure 10. Creature Later Development Configuration. ...18
Figure 11. Shielded DC Motor inside Motor Mount...20
Figure 12. Crystal Oscillator PWM Circuit...22
Figure 13. Single Supply Triangle Wave PWM Circuit. ..24
Figure 14. Optoisolation and unity gain amplification of PWM signal.25
Figure 15. Simplified Electrical System Diagram...28
Figure 16. Interconnect and Charging Panel Schematic. ..30
Figure 17. Main Power Panel Schematic. ...31
Figure 18. Test and Distribution Panel Schematic. ...33
Figure 19. Twelve Volt Regulator...37
Figure 20. Example Buck Switching Converter. (After Pressman)40
Figure 21. Buck Switching Regulator Waveforms. (From Pressman)..............................41
Figure 22. DC/DC Buck Switching Regulator Schematic. ...44
Figure 23. Second-generation Electronics Bus. ..46
Figure 24. IR Ranging Sensor Installation. ...53
Figure 25. Sonar Sensor Head Controller Circuit. ..57
Figure 26. Sonar Sensor Head Controller Circuit Page 2..58
Figure 27. Hamamatsu P5587 photodetector circuit. (From Hamamatsu)........................60
Figure 28. Wheel speed optical target disk and detector...61
Figure 29. FalconGX IMU Axes. (From ONavi)..63
Figure 30. Sonar Controller Timing Diagram. ..66
Figure 31. PIC16F690 Sonar Sensor Head Controller Program Flowchart.68
Figure 32. Continuation of Program Flowchart. ...69
Figure 33. Sonar Range Data Sentence. ..71
Figure 34. Tachometer Program Flowchart Page 1...78
Figure 35. Tachometer Program Flowchart Page 2...79
Figure 36. Tachometer Program Flowchart Page 3...80
Figure 37. Flowchart of Robot Operating Program. ...85
Figure 38. DC Motor Voltage output as a Function of Analog Input Voltage..................93
Figure 39. PWM Duty Cycle as a Function of Analog Input Voltage.94
Figure 40. Duty Cycle Variation with Increasing Analog Input Voltage.95
Figure 41. Sonar Sensor Head Scanning Sequence...98

 xii

Figure 42. Detection of Targets in Three Adjacent Sectors. ...106
Figure 43. Sonar Azimuth Scan Showing Linear Features of Hallway.108
Figure 44. PWM Schematic Page 1...116
Figure 45. PWM Schematic Page 2...117
Figure 46. Creature Operating Manual Page 1..122
Figure 47. Creature Operating Manual Page 2..123
Figure 48. Creature Operating Manual Page 3..124
Figure 49. Creature Operating Manual Page 4..125

 xiii

LIST OF TABLES

Table 1. Measured Electronics Bus Loads...34
Table 2. Sonar Data Array Index to Azimuth Cross-reference......................................72
Table 3. PIC Connections to Sonar Circuit..73
Table 4. Reported Range Byte Value vs. Measured Range. ..104
Table 5. Wire Color Codes. ...119
Table 6. Electrical Wiring Function to Label Cross-reference.120

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

The process of creating a novel autonomous vehicle presented me with a

formidable challenge that I could never have accepted, let alone succeed at, without the

love and support of my family. To my wife, Michelle, I give you my heartfelt thanks.

You listened patiently as I explained an endless series of problems related to the project

over the course of many months, and often the act of talking it through provided me the

course ahead. You allowed me the time to concentrate on completing an autonomous

vehicle I could be proud of. Thank you so very much. To my sons, Alec and Kevin,

thank you for sacrificing your time with me. To my parents I wish to extend special

thanks. Your unique insights were always welcome, and I appreciated your assistance in

the preparation of this document.

Professor Harkins, thank you for giving me the opportunity to push forward with

the myriad of pioneering ideas I attempted. To James Calusdian, I give my deepest

thanks for helping me dive into assembly language programming by sharing your

knowledge of PIC microprocessor programming. I wish to thank Sam Barone for his

wealth of electronics knowledge and his willingness to help when things became truly

strange. I would like to thank George Jaksha for his assistance in crafting numerous parts

that comprise the Creature, and I thank Mandy Drury and Donna Shewchuck for their

help procuring what Sam and George could not build or unearth from the depths of

Spanagel Hall.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

In both civilian industry and the Department of Defense (DoD) robotics continue

to grow in importance as the capabilities of computer processors increase and researchers

pursue ways to exploit these gains. Presently, robotics comprises a diverse field ranging

from stationary industrial machines to vehicles able to traverse planets beyond the reach

of any human being to date. Like the National Aviation Space Administration (NASA),

the DoD has recognized the utility of autonomous vehicles to complete missions ill-suited

to humans due to the mission’s hazardous nature, the hostility or remoteness of the

environment, its tedious nature, its long duration, or other factors.

A. HISTORIC MILITARY ROBOTIC TASKS AND RESEARCH

Historically, the DoD’s efforts in unmanned autonomous ground vehicles have

primarily been channeled into robotic devices, such as iRobot’s PackBot, to conduct

explosive ordnance disposal (EOD) or to provide troops with reconnaissance in urban

areas. Figure 1 shows the PackBot in action.

Figure 1. iRobot’s PackBot conducting EOD task in Iraq. (From [1])

 2

The obvious desire to spare humans from the need to engage in potentially deadly

work such as EOD represents one thrust in DoD robotics. Airborne reconnaissance and

weapons employment by unmanned aerial vehicles (UAVs) such as the MQ-1 Predator

and its successor, the MQ-9 Reaper, are missions whose characteristics, chiefly long

duration and danger to humans, are clearly suited to robotics. Figure 2 shows the U.S.

Air Force’s newly-operational MQ-9 Reaper. According to General Mosley, the Air

Force chief of staff, Reaper’s 14 hour endurance is its primary advantage over human-

piloted aircraft, not the fact that it removes humans from the battlespace [2].

Figure 2. MQ-9 Reaper UAV. (From [3])

Within the DoD little effort has been devoted to applying robotic solutions to

tedious tasks. Rather, DoD and the Defense Advanced Research Projects Agency

(DARPA), through its DARPA Grand Challenge and Urban Challenge, have emphasized

research into technologies to replace human-operated ground combat vehicles on the

battlefield, in support of the Congressional mandate put into law with the National

Defense Authorization Act for Fiscal Year 2001 [4]. Figure 3 shows the top three

finishers from the 2007 Urban Challenge, a competition designed to promote research

into robotic technologies necessary to remove humans from battlefield vehicles.

 3

Figure 3. DARPA Urban Challenge Top Three Finishers. (From [5])

While such efforts are laudable, they neglect the utility of autonomous vehicles

for menial, boring, long-duration, routine tasks. Every day men and women in uniform

are called upon to complete necessary, albeit time consuming, tasks that waste valuable

productive time.

B. PROJECT MOTIVATION

One such task is the ongoing safety and aircraft maintenance requirement to

remove debris, or foreign objects, from areas such as flight lines, hangars, hangar bays,

and flight decks of U.S. Navy installations and ships. Foreign objects are an amazingly

broad class of debris that may include, but is not limited to, the following types of

objects:

• aircraft fasteners (e.g. rivets, screws, nuts)

• safety wire

• coins

• tools

• soda cans

• flight gear

• packaging materials (e.g. boxes, wooden splinters from crates)

 4

When a foreign object is ingested by a turbine engine, regardless of whether it is a

turbofan, turboshaft, or turboprop engine, the resultant damage, referred to as Foreign

Object Damage (FOD) can be costly. If one considers simply the engine replacement

cost data available from the Naval Safety Center, then the monetary costs associated with

damage to a single F/A-18 E/F Super Hornet jet engine could reach $4.7 million [6].

Engine replacement costs, though, ignore the deadlier potential of FOD. FOD kills. Loss

of an engine during a critical phase of flight, such as landing or take off, could result in

the complete loss of the aircraft, its aircrew, and the associated loss of the time and

money invested in their training. The Naval Safety Center estimates the Navy and

Marine Corp spend $90 million annually on FOD-related damage and devote tens of

thousands of man-hours to preventing and repairing damage from FOD [7].

Currently, Navy prevention largely consists of “FOD walkdowns,” shown in

Figure 4, that require anywhere from 30 to 80 people. The FOD walkdown shown in

Figure 4 might require 100 people and take 20 minutes; that represents 30 man hours of

work. Personnel walk side-by-side and visually scan the deck in front of them to detect

FOD and then manually remove it. This task is competed several times each day and is

required prior to conducting flight operations. The Navy’s current prevention method

will become harder to accommodate in the future as the service fields newer ships

designed to operate with reduced manning compared with ships presently in service.

C. PROBLEM SOLUTION

An autonomous solution to FOD detection and removal aboard ships could

supplement or replace the present manual methods and allow those people to spend their

time in more productive ways. Further, a robotic solution would never tire or become

distracted, as can occur when humans conduct manual FOD detection and removal.

 5

Figure 4. Typical FOD Walkdown aboard USS CARL VINSON (CVN 70). (From [8])

 6

THIS PAGE INTENTIONALLY LEFT BLANK

 7

II. HOLONOMIC MOTION

A. MOTIVATION

The autonomous vehicle conceived to address the problem of automated FOD

detection and removal was dubbed the Creature. Its operating environment was

anticipated to include numerous, closely-spaced obstacles. Previous SMART program

robots have included conventional four-wheel, skid steered and tracked chassis designs,

but these were intended for use outdoors in environments with greater obstacle spacing

than the Creature’s proposed environment [9,10,11]. To achieve mobility in an

environment such as a typical office, it was decided that the design should be capable of

rotation in place within its own footprint. Kitagawa, Kobayashi, Beppu, and Terashima,

describe the usefulness of a holonomic vehicle in exactly this sort of environment, and

note that motion planning for such vehicles is simpler [12]. Robotic researchers have

regularly employed holonomic designs in applications where extreme mobility is

required, e.g., robot soccer [13]. The researcher decided that the FOD finding robot

project offered a good avenue to explore holonomic motion.

B. HOLONOMIC MOTION DEFINITION

In robotics, a holonomic robot possesses an equal or greater number of

controllable degrees of freedom (DOF) as the total DOFs of the system [14]. Past

literature has also referred to holonomic vehicles as multi-directional or omnidirectional

vehicles. Dickerson distinguishes between singular and non-singular multi-directional

vehicles. A vehicle with independently steered wheels might be capable of multi-

directional motion, but even “a small motion in some directions may require a large

motion of the propulsion system,” which makes the vehicle singular [15]. In contrast, a

non-singular vehicle such as the Creature, “can move a small amount in any direction

without a large motion of the wheels” [15]. A holonomic vehicle operating on a plane

surface is capable of instantly achieving translational motion in any direction while

yawing.

 8

C. DERIVATION OF EQUATION OF MOTION

Kalmár-Nagy, Ganguly, and D’Andrea provide a derivation of the equation of

motion for a three-wheeled omnidirectional vehicle as a prelude to their discussion of a

less computationally demanding control theory for such a vehicle [16]. Rojas and Förster

also provide a concise derivation [17]. We begin by considering an arbitrary Cartesian

coordinate frame of reference about the center of mass of the robot. Additionally, assume

the center of mass coincides with the geometric center of the robot’s circular chassis and

is located at the origin, O', as in Figure 5. The positions of the robot’s omniwheels about

its center of mass are functions of the angle φ.

Figure 5. Reference Frames. (After [16])

Equation Chapter 2 Section 2

The vector r'i, describes the position of the i-th wheel. For a counterclockwise

rotation angle, φ, from the X' axis, a rotation matrix R(φ) given by Equation 2.1 can be

applied to each wheel position vector to obtain the wheel position in the Cartesian frame

of the robot (X' Y')T.

cos sin

()
sin cos

R
ϕ ϕ

ϕ
ϕ ϕ

−⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (2.1)

 9

For the first wheel the angle φ is arbitrarily set equal to π / 2 , thus aligning r'1

with the Y' axis. If the wheels are arranged 120º apart and located at distance B from O'

then their positions in the robot frame are:

r'1 = R
π
2

⎛
⎝⎜

⎞
⎠⎟

B
1
0

⎡

⎣
⎢

⎤

⎦
⎥ = B

0
1

⎡

⎣
⎢

⎤

⎦
⎥

r'2 = R
2π
3

⎛
⎝⎜

⎞
⎠⎟

r'1 = R
2π
3

⎛
⎝⎜

⎞
⎠⎟

B
0
1

⎡

⎣
⎢

⎤

⎦
⎥ = B

− 3 2
−1 2

⎡

⎣
⎢

⎤

⎦
⎥

r'3 = R
4π
3

⎛
⎝⎜

⎞
⎠⎟

r'1 = R
4π
3

⎛
⎝⎜

⎞
⎠⎟

B
0
1

⎡

⎣
⎢

⎤

⎦
⎥ = B

3 2
−1 2

⎡

⎣
⎢

⎤

⎦
⎥

The drive direction of each wheel is perpendicular to the wheel position vector.

The unit vector describing the drive direction, D'i , of the i-th wheel is obtained by

applying the rotation matrix R(π / 2) to the position vector of the wheel. For the number

one wheel the drive direction is given by Equation 2.2. Equations 2.3 and 2.4 give the

drive directions for the number two and three wheels, respectively.

 1 1

0 11 1'
1 02 2

R R B
B B

π π −⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦
D r' (2.2)

 2 1

1 201 2 1 7'
12 3 6 3 2

R R R B
B B

π π π ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦
D r' (2.3)

 3 1

1 201 4 1 11'
12 3 6 3 2

R R R B
B B

π π π ⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦ ⎣ ⎦
D r' (2.4)

The position of the robot’s center of mass at O' is related to the Newtonian Earth

frame of reference by the vector, Ro. Additionally, the two frames may be rotated by an

angle θ with respect to each other, so a rotation matrix, R(θ), can be applied to relate any

position vector in the robot’s frame to the Earth Frame, (X Y)T.

 10

Figure 6 is a simplified view showing the relationship between the positions of

the number one wheel in each frame. Let the vector ri be the position of the i-th wheel in

the Earth frame. Then the position of the wheel, ri, is the sum of the vector RO from the

Earth frame origin, O, to the center of mass plus the vector r'i rotated to account for the

rotation between the frames.

Figure 6. Wheel Position in Earth and Robot Reference Frames.

Equation 2.5 gives the position vector in the Earth frame as a function of the

vector from the origin, O, to O' and the rotated vector from the robot frame.

 () 'O iR θ= +ir R r (2.5)

1

2 1

3 1

0
() ' ()

1

3 2() ' () (2 3) ' ()
1 2

3 2() ' () (4 3) ' ()
1 2

O O

O O O

O O O

R R B

R R R R B

R R R R B

θ θ

θ θ π θ

θ θ π θ

⎡ ⎤
= + = + ⎢ ⎥

⎣ ⎦
⎡ ⎤−

= + = + = + ⎢ ⎥
−⎣ ⎦

⎡ ⎤
= + = + = + ⎢ ⎥

−⎣ ⎦

1

2

3

r R r R

r R r R r R

r R r R r R

 11

The velocity at the wheel location, vi, is obtained in the same manner by taking

the time derivative in Equation 2.6. Since the vectors r'i are constant with time in the

robot’s frame, their time derivatives are zero, and the velocities in the Earth frame are

given by:

 () ' '() ' ()O i i
Oi i

d dR ddR R
dt dt dt dt

θ θ θ= + = + +
R r rv R r

i

 () 'Oi iR θ= +v R r
i i

 (2.6)

1 1

2 2 1

3 3 1

() '

() ' () (2 3) '

() ' () (4 3) '

O

O O

O O

R

R R R

R R R

θ

θ θ π

θ θ π

= +

= + = +

= + = +

v R r

v R r R r

v R r R r

i i

i i i i

i i i i

At each wheel, i, the wheel velocity, v 'i , must be aligned with the unit vector D'i

that defines the drive direction for that wheel. Alternatively, one can think of the wheel

velocity arising from the dot product of the velocity at the drive point and the drive

direction, since the wheel’s axis is fixed and perpendicular to the drive direction.

vi ' = v i • R(θ)Di ' or vi ' =
v ix

v iy

⎡

⎣
⎢

⎤

⎦
⎥ R(θ)Di '

One can substitute the velocity vi above into the equation, to derive Equation 2.7.

' () ' () ' () '

' () ' () ' () '

' () ' ' () () '

T
ix

Oi i i i
iy

TT

Oi i i i

TT T

O ii i i

v R R R

v R R R

v R R R

θ θ θ

θ θ θ

θ θ θ

⎡ ⎤ ⎡ ⎤= = +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

v
D R r D

v

R D r D

R D r D

i i

i i

i i

 ' () '
T

Oi iv R Bθ= + ΩR D
i

 (2.7)

 12

In Equation 2.7 the tangential velocity, BΩ, was substituted for the second term in

the last step. One can see the wheel velocity contributes to a linear velocity component

that produces translational motion, and a rotational velocity component responsible for

rotation about the center of mass. If each wheel has radius b and rotates at an angular

speed, ω, the wheel velocities, iv , can be written as in Equation 2.8.

1 1

2 2

3 3

cos sin

1 2cos 3 2sin 1 2sin 3 2cos

1 2cos 3 2sin 1 2sin 3 2cos

xBv
v b B y
v B

θ θω
ω θ θ θ θ
ω θ θ θ θ θ

⎡ ⎤
− −⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = + −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ − +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎣ ⎦

i

i

i

 (2.8)

If each wheel’s action against the surface produces a force, fi, due to friction

along the D'i direction, then the total force on the robot is FR, which is obtained by

summing the three individual drive forces.

 F 'R = fi
i=1

3

∑ Di '

In the Earth frame this can be expressed using the rotation matrix.

 FR = fi R(θ)
i=1

3

∑ Di '

Conservation of linear momentum gives the equation of motion of the robot,

which uses the rotation matrix above to relate forces in the robot frame to the Newtonian

Earth frame in Equation 2.9.

 R M=F a

23

2
1

() ' O
i i

i

d RR M
dt

θ
=

=∑ f D (2.9)

 13

Conservation of angular momentum requires the time rate of change of angular

momentum, L, equal the torque ,
→

Γ , applied.

dL
dt

= Γ
→

Considering only the forces acting parallel to the x-y plane at distance B and the

angular momentum, L, about the robot’s Z' axis, one can write the conservation equation.

Then one can replace the time rate of change of the angular momentum with the moment

of inertia, I, and the acceleration of the robot’s chassis rotation, which is equivalent to the

second derivative with respect to time of the angular displacement between the two

coordinate frames as shown in Equation 2.10.

3

1
fz

i
i

dL B
dt =

= ∑

2 3

2
1

fi
i

dI B
dt

θ
=

= ∑ (2.10)

 14

THIS PAGE INTENTIONALLY LEFT BLANK

 15

III. EXPERIMENTAL DESIGN

The Creature is a three-wheeled omnidirectional, or holonomic, robot capable of

semi-autonomous operation. It was conceived as a prototype to address the problem of

automated FOD detection and removal as well as to provide a research platform for

future SMART Program efforts. Its major components are shown in Figures 7 and 8.

Figure 7. Diagram of Major Components Installed on Lower Level.

 16

Figure 8. Diagram of Major Components Installed on Upper Level.

A. MECHANICAL CONSTRUCTION

1. Chassis

The chassis design required a platform that was light-weight, strong, and large

enough to provide area for mounting components required for the robot’s operation, such

as batteries, motors, sensors, CPU, etc. A SuperDroid Robots three-wheeled vectoring

robot kit consisting of motors, wiring, and chassis was purchased with the intent to use it

as the robot’s chassis and propulsion. The vendor-supplied equilateral triangular base,

measuring eleven inches on a side, was deemed too small because it would not have

allowed sufficient space to mount the anticipated equipment or allowed for growth. A

larger, low-cost chassis was constructed by reusing a 1/8-inch thick aluminum plate

 17

recovered from a computer’s backplane. A seven-inch radius disk with a mass of 838 g

was cut from the plate. It was drilled to mount the three motor mounts to the underside

of the plate at 120º intervals. The disk also served as a ground plane to isolate the

electronics, sensors, CPU, and devices powered by the electronics bus from radio

frequency interference (RFI) produced by the three brushed direct current (DC) motors

below the chassis.

During construction of the chassis, provision was made to mount three 12 V,

batteries on the underside of the chassis disk in the space between each motor mount.

Since the batteries were among the most massive components installed, placing them at

roughly the same height as the wheel axles was believed to offer improved stability

compared to placing them atop the chassis. To increase the robot’s moment of inertia

about its Z axis, the batteries were placed 11.5 cm from the chassis’ geometric center

rather than directly under it. Based on the derivation of the equation of motion in

Chapter II, one can see that a larger moment of inertia would help maintain directional

control in cases where a torque was applied due to imbalances in motor speeds.

The triangular aluminum plate supplied by the vendor was briefly considered for

use as a second level for mounting the CPU and sensors. Figure 9 shows the chassis at an

early phase of construction with the original triangular top plate. A redesign of the

electrical power supplies, described in the Electrical System Design section, required

replacing the triangular plate with a larger mounting surface. A Plexiglas square,

supported by four-inch-long aluminum standoffs was installed in its place. The square

plate provided a larger mounting surface. Sonar sensors were mounted atop it, and the

large, flat electronics battery and router are hung beneath it. Four screws attach the top

plate to the standoffs, and all devices attached to the top plate feature electrical quick

disconnects to allow the operator to remove the top plate in under two minutes for easy

access to components mounted atop the chassis. Equation Chapter 3 Section 3

 18

Figure 9. Bare Chassis with Motors Installed.

Figure 10 shows the Creature in a later stage of development. In this photo the

first generation electronics bus, visible on the left, is still installed, and the buck

switching DC/DC converter has not been installed yet.

Figure 10. Creature Later Development Configuration.

 19

2. Omniwheels

The heart of the Creature’s holonomic mobility is its three Kornylak Transwheels.

The plastic wheels have a 4 inch O.D. and two rows of eight free-turning rollers. The

wheels’ measured diameter was approximately 10 cm, which agrees with the

manufacturers’ specification. The rollers are oriented 90º to the direction of the motor’s

axle. The Creature uses the double row model 4000 series, which are rated at 100 pounds

per wheel [18]. The Creature’s weight during the experimental observations was 20 lbs;

thus the load supported by any individual wheel is well within limits.

B. PROPULSION AND CONTROL

1. Motors and Motor Controllers

The Creature is propelled by three 12/24V IG32 ∅32 mm brushed DC gear

motors. The motors have a mass of 194 g and a rated speed of 195 rpm. According to

the manufacturer’s specification sheet, the planetary gear’s 1:27 reduction ratio applied to

the 6500 rpm no-load motor speed produces an output wheel speed of 240 rpm or 8π

radians/s. Rated torque is 1.4 kg cm. Operated at 24 V, the motors draw a maximum of

1.1 A under 350 g cm load [19]. The vendor’s motor wiring kit, which includes ferrite

rings and shielded hook-up cables, was used to connect the output terminals of the motor

controllers to the DC motors’ leads. The cables’ internal foil shielding is grounded to the

chassis to reduce or eliminate unwanted radiated electromagnetic radiation from the DC

motor leads, which could act as transmitting antennas.

The motors were installed under the chassis inside the box-like motor mounts

supplied with the vendor’s vectoring robot kit. The mounts are constructed of welded,

1/8-inch aluminum, and each mount’s mass was 205 g. In addition to using the chassis as

a ground plane to isolate the CPU and electronics from RFI from the DC motors, each

motor was wrapped in a metal screen, forming a small cylindrical Faraday cage around it.

Figure 11 shows the underside of the robot. One motor is visible inside its Faraday cage

in the photograph. A motor controller is visible on the left. Reducing the length of the

motor leads was another RFI reduction measure.

 20

Each motor receives DC electrical power independently via a SuperDroid Robots

3A PWM motor controller. This controller uses an LMD18200 H-bridge motor driver,

which is rated at 3 A [20]. The LMD18200 is operated in the sign/magnitude mode, i.e.,

the controller is supplied two signals, the digital PWM magnitude and the desired motor

direction. A lack of PWM signal is interpreted as zero magnitude. Using the

sign/magnitude mode provided a finer control of the wheel speeds by allowing the

robot’s CPU to map its entire analog output range to the desired wheel speed. Previous

SMART program robots have operated the same PWM motor controller in a bidirectional

magnitude mode, which decreased the resolution of the speed control and resulted in

unsteady operation at slow speeds or when stopped [11]. The motor controller’s brake

signal is not used, and it is held in a low logic state.

Figure 11. Shielded DC Motor inside Motor Mount.

2. PWM and Optoisolation Circuit

One design goal for the Creature was to distribute the computational load and the

CPU’s workload. Other autonomous vehicles constructed as part of NPS SMART

 21

program have used the BL2000 single board computer, a 20 MHz processor that offers

modest computational speed. It has proven adequate when tasked with running the robot

operating program [11]. It was decided that the CPU would control motor speeds with an

analog speed signal rather than devote CPU cycles to producing a pulse width modulated

(PWM) signal. Three design challenges arose from this. First, the motor controllers

described above require a PWM input, so the CPU’s analog signal required a circuit able

to produce PWM signals from an analog voltage. Second, electrically isolating the CPU

on a separate power bus from the motor controllers and DC motors required optical

isolation, which in turn required that the CPU’s signal be converted to a digital form.

Third, the digital direction signals for each motor also needed to be passed from the CPU

to the motor controllers, requiring optoisolation for these signals as well.

a. Early Efforts in Pulse Width Modulation of Motor Speed Signals

Intersective pulse width modulation has been implemented previously

using the analog speed signal as a reference and comparing it against a regularly varying

signal. Miller provides an explanation of a PWM circuit that has been previously used on

the Autonomous Ground Vehicle (AGV) SMART program robot. The circuit was based

on a LM 555 timer IC [10]. A number of oscillator circuits were explored, including

crystal oscillator and LRC tank circuits, in an attempt to improve on the existing PWM

circuit.

b. Crystal Oscillator Circuit

A simple 100 kHz crystal oscillator tank circuit using an LM741 opamp

was fed to a LM393N comparator. The circuit’s schematic is provided below in Figure

12. A significant complication with the crystal oscillator circuit was that it and other

sinusoidal oscillator circuits required positive and negative rail voltages. Providing

positive and negative rail voltages would have complicated the electronics power supply,

so single supply solutions were preferred. Negative triangle wave voltages were not

desired, so a diode clamp was used to raise them to a minimum of -0.4 V. Later a 3 kΩ

pull-up resistor, not shown, was connected to the PWM signal output to pull-up the

output to positive levels.

 22

The circuit showed promising results, and produced a very linear response.

In prototype testing the triangle wave of the crystal oscillator and the analog signal were

provided to the comparator, and the PWM signal’s duty cycle recorded. Then the

comparator opamp was provided the reference analog signal and a 100 kHz triangle wave

from a function generator. The crystal circuits’ data were virtually identical to that

obtained with the function generator providing the triangle wave. A linear fit of the

crystal circuit’s data was obtained; the circuit produced a 0% duty cycle at 0 V, and a

100% duty cycle at 3.730 V. The analog speed signal range corresponded well with the

analog output voltage limits of the BL2000, which was the target CPU at the time.

Figure 12. Crystal Oscillator PWM Circuit.

Ultimately, the crystal tank circuits’ frequency proved too high to be

practical. The 2531 optoisolator IC available for use on the robot distorted the signal

above 10 to 11 kHz due to insufficient slew rate. Further, it was discovered the motor

controller manufacturer recommended an input signal frequency of 1 kHz.

 23

c. Final PWM Circuit using RC Oscillator

Inductor resistor capacitor (LRC) tank circuits were unsuccessfully tried

and discarded. In the end resistor capacitor (RC) oscillator circuits were investigated

because of their lower frequencies. A complimentary metal oxide semiconductor

(CMOS) relaxation oscillator using LM741 opamps was tested. Its triangle wave output

was not symmetric nor was the slope, despite trimming the opamp. Research provided a

good example that formed the basis of the circuit that was installed on the Creature [21].

It used one quad LM324 opamp in place of the two LM741 opamps. To better

accommodate the single voltage supply of the robot and increase the triangle wave’s

output voltage range, a LM6132 10 MHz, rail-to-rail opamp was substituted for the

LM324.

Figure 13 shows a portion of the complete circuit that was manufactured

and installed. It shows one channel and omits the portion of the circuit responsible for

optical isolation. The circuit proved compatible with the single supply electrical power

available the on the robot’s electronics power bus owing to the use of the voltage divider

reference voltage used as inverting input into opamp B. The LM6132 opamp B is

connected as a Schmitt trigger and acts as an astable multivibrator. The opamp A acts as

an integrator on the first opamp’s output. It provides delayed negative feedback to the

Schmitt trigger opamp. Because the Schmitt trigger’s output is a constant equal to either

the positive or negative rail voltage, integrating the constant voltage produces a signal

whose voltage varies linearly with time.

 24

Figure 13. Single Supply Triangle Wave PWM Circuit.

The frequency of the triangle output is a function of the resistor R15,

capacitor C1, and the Schmitt trigger’s thresholds. The circuit produced a PWM

frequency equal to 1.33 kHz. The resultant triangle wave was supplied to a LM741

opamp C configured as a comparator.

The robot’s CPU, initially the BL2000, had an analog voltage output range

0 to 4.096 V, so non-inverting amplifier was included in the circuit. Opamp D was

configured as a non-inverting amplifier with a gain equal to two. The gain was selected

so that an analog voltage equal to 4.096 V would coincide with the maximum voltage of

the triangle wave and produce a 0% duty cycle PWM signal. Resistors R9 and R10 were

chosen to be 18 kΩ and 23.1 kΩ, respectively. The opamp had the added benefit of

providing high input impedance for the CPU’s signal.

The PWM signal produced by the portion of the circuit above was passed

to dual 2531 optoisolators next. Each device contains two emitter light emitting diodes

(LEDs) to convert the electrical signal into an optical one and a detector to reverse the

process and produce an electrical output voltage. Figure 14 shows a portion of the circuit

responsible for isolating one channel. A capacitor, C5 was installed for noise

suppression. In this configuration, the 2531 was connected to produce negative pull-up.

 25

Note, the PWM circuit above produced a 100% duty cycle when the analog speed signal

was zero. The duty cycle decreased with increasing analog voltage. The negative pull-

up, or pull down, applied to the optoisolator inverted this, and the resulting duty cycle of

the optoisolator’s output was 0% when an analog speed signal of zero was applied. It

increased linearly with increasing voltage once the voltage exceeded the 1.2 V threshold.

A unity gain amplifier was included between the optoisolator and the circuit’s output to

impedance match the motor controllers’ input.

Figure 14. Optoisolation and unity gain amplification of PWM signal.

The resistors R1 and R4 were chosen to provide the correct forward

current, If, through the optoisolator. Use of the LM741 opamp as a comparator ensured

that the circuit could tolerate R1 resistance of 550 Ω without dragging down the PWM

voltage due to impedance mismatching. Resistor R1 was chosen such that If was equal to

10 to 15 mA with PWM signal voltages 8 to 10 V peak to peak. Selecting R4 equal to

2.2 kΩ ensured sufficiently high output voltages. The optoisolated PWM voltages were

observed to be 4.9 V peak to peak.

The circuit also passed three signals that could be used for either brake or

direction signals to the motor controllers. Because of the negative pull up in the

optoisolators, if a high logic level was desired at the motor controller, then a zero volt

signal to the PWM-generating circuit was required. Of note, although the LM6132 “rail-

to-rail” opamps were used to buffer the PWM speed signals, a quad LM324 opamp was

 26

used to buffer the direction signals to reduce the number of components on the PCB and

save space. This choice proved adequate, but the voltage of the high logic state was

observed to reach a mere 3.7 V, not 5.0V. Regardless, the signals’ voltages were

sufficiently high to properly operate the motor controller.

The complete circuit is provided in Appendix A. It shows the three motor

channels, optical isolators and unity gain amplifiers installed to buffer the output. The

PCB for the three channel circuit was laid out using Cadsoft’s Eagle circuit design

software, which produced all the needed Gerber and drill files for manufacturing. The

PCB was installed under the Main Power Panel (MPP) to limit the length of the motor

power bus leads. The optoisolated PWM signals leave the PWM board and are routed to

the underside of the chassis as a RFI reduction measure.

C. ELECTRICAL POWER SYSTEM

1. Design Goals

The electrical power system was designed to be functional, reliable, expandable,

and compact. Part of functionality and reliability was the desire to provide the CPU and

electronics with supply voltages that were noise free. At the earliest stage of design, it

was decided that separate power supplies for motors and electronics were necessary to

achieve low noise on the electronics supply. No previous SMART program robot had

implemented isolated battery power supplies [9,10,11]. Reducing or mitigating RFI was

a reliability concern, since noise supply voltages could interfere with reliable operation of

sensitive microcontroller devices. Fabrication of electrical bus components relied heavily

on handmade printed circuit boards to improve reliability by eliminating wire runs that

could act as antennas for RFI. PCBs also helped achieve neat, compact components that

fit the Creature’s space constraints. Power connectors in excess of the planned number of

loads were included in the design to provide expandability.

 27

2. Electrical System Design Evolution

The Creature’s electronics power supply underwent three major revisions. The

earliest power bus included a forerunner of the current MPP. Constructed using heavy

barrier strips to connect to the robot’s three batteries, the first bus’ 700 g mass and large

size rendered it unsatisfactory when the battery arrangement was changed. The Main

Power Panel, constructed from printed circuit board materials, followed.

Initial mockup of the Creature’s major components called for three identical 12 V

Nickel Metal Hydride (NiMH) batteries to be symmetrically mounted under the chassis.

Two were planned to supply power to the three DC motors, and one was to provide

electronics power. This elegant arrangement ensured the center of mass coincided with

the chassis’ center. The linear regulators responsible for the twelve-volt power required

roughly two volts headroom above the regulated voltage, though, and the original

electronics battery was not able to provide sufficient voltage. The NiMH battery was

removed and an extensive redesign of the electrical system and chassis ensued.

Experience with earlier SMART program robots indicated the largest electronics

load would be the robot’s wireless communications device [11]. The current demand of

the two routers available to the researcher was anticipated to be of the order of one

Ampere, and this relatively large current demand ultimately caused problems with the

first-generation electronics bus. A second-generation electronics power bus and a new

buck switching DC/DC regulator were designed to address the shortcomings of the first-

generation bus. The 5V DC/DC regulator section provides further details regarding the

theory and construction of the buck switching regulator.

Appendix B provides an index to numbered electrical supply lines, digital signal

lines, and analog signal lines that are installed in the robot. Color-coded wires also have

been numbered for ease of reference. Consult Appendix B for color codes as well.

3. Overview of Motor and Electronics Power Busses

The Creature’s electrical power distribution consists of an electronics power bus

and a completely isolated motor power bus. This isolation was implemented to prevent

noise from the DC motors producing noise on the power and ground lines of sensitive

 28

electronics such as the CPU or microcontrollers. Figure 15 shows a simplified block

diagram of the major components of the robot’s electrical system. Yellow components

represent electronics bus components, while green is used for motor power bus devices.

The following components have separate electrical supplies and different ground voltage

references:

• Main Power Panel (MPP)

• Pulse Width Modulation (PWM) and Optoisolation Circuit

• Test and Distribution Panel

Figure 15. Simplified Electrical System Diagram.

 29

4. Motor Power Bus

The motor power bus is expressly designed to provide unregulated voltage to

three loads, namely the three DC motors for propulsion. It has a secondary function to

provide 5V DC power to the optically isolated components in the PWM circuit that must

be isolated from the electronics power bus. To the maximum extent possible, all wiring

runs for the motor power bus are located underneath the chassis’ disk. Where

connections must be made to components atop the chassis, such as the Test and

Distribution Panel or Main Power Panel, the length of the leads on the upper side of the

chassis has been minimized by routing them under the chassis to points near the

component before routing the wires back up through the chassis. The motor power bus

consists of four components:

• Batteries

• Motor Battery Interconnect and Charging Panel

• Main Power Panel (MPP)

• Test and Distribution Panel (TDP)

a. Motor Power Batteries

Two NiMH batteries with Anderson Power Products (APP) Powerpole

connectors are connected to a motor battery interconnect panel mounted under the

chassis. The APP connectors are color-coded red positive and black negative. The

connectors provide secondary electrical isolation; the interconnect panel provides the

primary electrical isolation. Each twelve-volt battery consists of 10 C-cells, and has a

4000 mAh capacity. Each battery’s mass is 772 g. Fully charged, each battery has been

observed to possess roughly 12.8 to 13 V potential between terminals.

b. Interconnect and Charging Panel

The interconnect and charging panel’s function is to allow for independent

charging of the two batteries. The panel is a printed circuit board (PCB) with a 1 oz

copper layer using 0.15 inch traces. It mounts two DPDT switches. Wide traces were

used to allow for expected current flows of approximately 4 to 6 A. Figure 16 shows a

schematic representation of the panel.

 30

Figure 16. Interconnect and Charging Panel Schematic.

On the left of the diagram, the connections represent screw terminals

which, in turn, are connected to short intermediate leads with Anderson Powerpole

connectors to interface with the two batteries’ leads. When the panel’s series switch is

closed, it allows the operator to put the batteries in series, providing 25 to 24 V,

depending on battery charge. The panel’s charge switch connects the batteries in series

to the motor power bus. Opening the connect switch disconnects the batteries from the

bus for independent charging if the series switch is opened, too. The panel includes

“banana” jack connections for connecting a battery charger to each battery without the

need to remove the motor batteries or disconnect battery leads.

c. Main Power Panel (MPP) Motor Power Bus Section

The MPP is a PCB mounted atop the chassis. Its primary function is to

switch the main electrical supplies and provide current protection with fuses. Referring

to Figure 15, one can see the board contains a motor power bus section and an electronics

power bus section. The following description refers to the panel’s operation with respect

to the motor power bus. Function of the panel with respect to the electronics power bus

is addressed separately. Figure 17 shows a schematic of the motor power bus section of

the MPP. Although collocated on the same PCB, electrical isolation demands that the

components not share any common leads or traces, and the traces were intentionally

grouped to increase separation. To properly handle the expected currents to the motors,

 31

the motor traces were kept wide, typically 0.1 inch. Although 1 oz copper PCB material

was used in the board’s construction, 2 oz material would be preferred to increase the

current carrying capacity and limit Ohmic heating. Two 330 µF capacitors, labeled C1

and C2 in Figure 17, limit noise on the unregulated series voltage output.

Figure 17. Main Power Panel Schematic.

 32

The MPP includes a double pole double throw (DPDT) switch for the

Motor Power Bus. Closing the switch connects the unregulated series voltage input from

the interconnect and charging panel to the three motor controllers via three independent

fuses, one for each motor. This is a precautionary measure and provides for future

growth/change, since the installed motor controllers contain on-board fuses. Alternative

motor controllers could be used in the future without the need to redesign the robot’s

power bus. Presently, 2 A fuses are installed, which limits current well below the 3 A

operating limit of the motor controllers. An LED indicator lights when the motors are

receiving DC voltage. Opening the motor switch opens the circuit, removing the series

voltage and allowing the operator to safely replace fuses. DC voltages for the motor

controllers are output through screw terminal connections.

A secondary function of the panel is to provide five volt DC power to

components in the PWM circuit that must be electrically isolated from the electronics

power bus’s five volt bus. To accomplish this, the main power panel mounts one five-

volt LM7805 linear regulator in a TO-220 package. It is heatsinked, although the current

draw by the PWM circuit’s components does not demand it. The MPP has screw

terminal connections for connecting its regulated five volt supply, unregulated motor

battery series voltage, and 0 V ground reference to the Power Distribution and Test Panel.

Motor power is supplied directly to the individual motor controllers.

d. Test and Distribution Panel

The Test and Distribution Panel contains sections for the motor power and

electronics power busses. The panel’s function is to provide easy access to motor bus

voltages for testing and troubleshooting. Additionally, the panel contains four banks of

WAGO connectors. Two of the banks are connected to motor power bus sources and

allow the user to supply electrical power to devices installed on the robot. The motor

power bus’ primary loads, the three DC motors, receive their supply separately, directly

from the MPP. The bus has only one other load. It supplies five volts to a portion of the

 33

PWM and optoisolation circuit containing the 2531 optoisolators and opamps that are

detailed in the section describing the PWM circuit. Figure 18 shows a diagram of the test

and distribution panel.

Figure 18. Test and Distribution Panel Schematic.

5. Electronics Power Bus

The electronics power bus consists of seven components:

• PowerStation 100 Electronics Battery

• AC Power Supply

• Main Power Panel

• 12V Regulator Panel

• Test and Distribution Panel

 34

• 5V Electronics Bus Panel (First-generation)

• 5V Electronics Bus Panel (Second-generation)

• 5V DC Buck Switching Regulator Panel

Consulting the simplified system diagram presented in Figure 15, one should note

that the electronics power bus loads fall into four major categories. Loads with sensitive

analog components such as the Inertial Measurement Unit (IMU) operated best with

precise 5.0 V supply. Other devices such as the sonar sensor head controller, namely a

PIC microcontroller, can operate on a range of voltages around 5.0 V. A third class of

loads, such as the wireless router, require five-volt regulated supply, but can function

with small variations, e.g. 0.1 to 0.2 V, about 5.0 V. The fourth class of loads includes

loads that have on-board voltage regulation. The BL2600 SBC and RabbitLink

programmer are capable of self-regulation of the supply voltage.

The table below lists the installed electronics devices, their supply voltages, the

observed current demand measured at the output from the electronics bus during normal

robot operation, and the power required based on the equation below. The power

required by each device, P, is equal to the measured current, I, multiplied by the voltage,

V.

 P = I ⋅V

Device Current (mA) Voltage (V) Power (W)
Router 700.0 5.1 3.6
BL2600 210.0 12.0 2.5
RabbitLink 75.0 16.5 1.2
Sonars & PIC controller 215.0 5.1 1.1
Sonar Sensor Head Servo 180.0 5.1 0.9
IR Rangers (6) 159.0 5.0 0.8
PWM 61.0 12.0 0.7
IMU 96.0 5.0 0.5
Tachometer & Detectors 61.0 5.0 0.3
I2C Compass 8.8 5.0 0.0
I2C SCL & SDA 0.4 5.0 0.0

Table 1. Measured Electronics Bus Loads.

 35

a. Electronics Battery

The original electronics battery was replaced with a PowerStation 100

lithium ion battery manufactured by Total-micro. It was designed to provide DC voltage

to laptop computers consuming 60 to 75 W. According to the manufacturer, the battery’s

specification calls for it to provide 16 to 20 V under 6.6A load, which agrees with its

nominal 16.5 V rated voltage [22, 23]. According to its specification, its rated capacity is

6.6 Ah [23]. Its mass is 907 g, and it measures 0.7 cm x 21.8 cm x 29.0 cm. The battery

is connected to the electronics power bus section of the MPP using the manufacturer’s #6

adapter plug, which provides center positive and exterior ground.

b. AC Power Supply

A Sony AC-V018G AC to DC adapter was found to supplement the

PowerStation 100 battery. If prolonged stationary testing of the robot’s sensors or CPU

is required, the operator can disconnect the electronics battery and connect the AC power

supply in its place to preserve the battery’s charge. The device’s case states that it is

rated at 18V and 4A, 72W maximum. Its original connector was replaced with a plug

matching the PowerStation’s #6 plug, with a center positive and exterior ground.

c. Main Power Panel (MPP) electronics bus section

The Main Power Panel contains an electronics bus section and a motor

power bus section. This paragraph describes its functionality with respect to the

electronics bus. The panel contains switched fuses to provide current limiting for

electronics. The panel contains two DPDT switches. Figure 17 shows a schematic of the

MPP. The electronics battery’s leads are connected via screw terminal connectors to the

panel. The unregulated battery voltage is constantly connected to the 12 V Regulator

Panel. When the CPU switch on the MPP is closed, the 12 V Regulator Panel’s output

passes through a fuse and is connected to a screw terminal ELEC_OUT-1. From the

terminal the regulated twelve volts is routed to the Test and Distribution Panel. An LED

lights when the switch is closed to indicate the CPU is receiving power. A second

 36

switch, labeled 5VBus is located between the CPU and motor switches. When it is

closed, unregulated power from the electronics battery is allowed through the fuse and

routed to screw terminals for connection to both the 5V/12V Bus Panel and the Test and

Distribution Panel. An LED operates to indicate power is available to the bus panel.

d. Test and Distribution Panel

The Test and Distribution Panel contains sections for the motor power and

electronics power busses. This section describes its operation with respect to the

electronics power bus. The panel provides easy access to electronics bus voltages for test

and troubleshooting. Additionally, the panel contains two banks of WAGO connectors

on its electronic power bus side. One provides unregulated voltage (nominally 16 V)

from the electronics battery, and the other provides twelve-volt power. The CPU is the

only twelve-volt load connected to the panel. It is switched via the MPP’s CPU switch.

Unregulated voltage is available to the panel’s WAGO connectors when the MPP Bus

switch is closed. The RabbitLink Ethernet programming interface for the BL2600 CPU

is the sole load for unregulated voltage from the Test and Distribution Panel. It receives

its supply via the third generation 5V Electronics Bus.

e. 12 V Regulator Panel

Although most electronic devices on the robot required five volts, the

robot’s CPU and original router required twelve-volt power. The space available on the

chassis and the need to reserve the area over the center of the robot for the IMU required

a separate panel for producing regulated 12 V. A compact PCB was built to mount one

SGK LM7812 linear regulator in TO-3 package, a heatsink, and screw terminal

connectors. The PCB included a generous ground plane on the reverse to reduce noise.

It was positioned to minimize the length of the leads connecting it to MPP. The MPP

supplies a nominal 16 V from the electronics battery to the regulator, and the regulator’s

output is returned to the MPP where it is switched. Figure 19 shows a photograph of the

panel. The edge of the MPP is on the left, and the 12 V Regulator Panel is in the center.

 37

Figure 19. Twelve Volt Regulator.

f. 5V Electronics Bus Panel (First-generation)

Initially, the Creature’s electronics were planned to use exclusively five-

volt devices. The first-generation bus panel provided supply voltage and ground

connections for electronic devices installed on the Creature. In keeping with the

electrical system design goals of expandability and reliability, a PCB was constructed to

mount four LM7805 linear voltage regulators and seven banks of WAGO connectors.

LED indicator lights were omitted to reduce voltage drops. The number of WAGO

connectors was chosen to provide numerous unused connections for future loads. The

output of each of the regulators is switched. The sonar modules can draw momentary

peak currents of approximately 1 A during transmit [24]. The SHARP infrared range

sensors were selected to share the regulator with the sonar modules because of the IR

sensors’ small current consumption. Devices using the I2C bus were teamed to receive

five-volt power from a single regulator. Due to the large current demand of the wireless

router it was provided its own linear regulator.

The completed first-generation bus panel proved inadequate and required

a redesign. The LM7805 regulator failed to maintain voltage when loaded by the

wireless router. The board’s layout impeded easy access to three of the banks of WAGO

connectors. Its usability was mediocre: the placement of the WAGO connectors did not

allow users sufficient room to easily connect wires.

 38

g. 5 V DC Buck Switching Regulator Panel

The failure of the first-generation electronics bus to maintain its five-volt

output when under load prompted the researcher to address the root of the problem and

develop a robust five-volt supply. In keeping with other work on the Creature, efforts

were made to ensure the solution was reliable and extensible to current and future

robotics projects in the SMART program. Noting that the original LM7805 had been

producing excessive heat, in effect wasting battery power to produce heat as a byproduct,

the researcher decided to pursue a more efficient DC/DC conversion method. Switched

power supplies are commonplace in all manner of battery-operated devices, from laptop

computers to cellular phones, but none had been installed previously on a SMART

program robot. Equation 3.1 from Pressman gives the linear regulator’s efficiency [25].

Equation 3.2 gives the efficiency of a buck switching converter [25].

 o o o o

in dc o dc

P V I VSeries Pass Device Efficiency
P V I V

= = = (3.1)

 o

o

PBuck Switching Converter Efficiency
P DC losses AC losses

=
+ +

 (3.2)

Implementing a simple step down, or buck switching, DC/DC converter

could result in drastically improved efficiency as demonstrated below, where V is the

voltage, P the power, and I the current. If one assumes a 1 V diode drop across the diode

and a worst-case AC switching loss case, then the losses are [25]:

DC losses = VdiodeIo = 1Io

AC losses = 2VdcIo
Ts

T

And the DC/DC converter efficiency becomes [25]: :

Buck Switching Converter Efficiency =
VoIo

VoIo + VdiodeIo + 2VdcIo
Ts

T

=
Vo

Vout + 1+ 2Vdc
Ts

T

 39

Consider an example where the linear regulator’s only load is a wireless

router, drawing current equal to 0.7 A, as in Table 1. If the linear regulator’s negligible

quiescent current is neglected, then Iout equals Iin. The efficiency reduces to a ratio of the

output to the input voltage. In the case of the first-generation electronics bus, stepping

down an input voltage of 16V to 5.0 V gives an efficiency of 31%. In contrast, a buck

switching regulator operated at 22 kHz with a switching delay, Ts, equal to 0.3 µs would

step down the same input voltage with efficiency equal to 82%. Note, Pressman’s

treatment assumes the voltage drop across the diode is 1 V. Using a Schottky diode, the

voltage drop Vdiode would decrease from 1.0 V to roughly 0.6 V, and efficiency would

increase.

Whereas a linear regulator operates a series pass transistor in its linear

region, effectively using the device as a variable resistor, a buck switching regulator

operates on an entirely different principle. As the name implies, a switching regulator

rapidly switches a fast-operating transistor on-and-off. For a constant period, increasing

the switching duration of the on portion of the period produces a pulse width modified

duty cycle. The time average of the voltage output increases with the increased on period

time. To smooth the switch’s square-wave output, an inductor-capacitor (LC) filter is

used. The LC filter outputs are “ripple-free DC voltages equal to the average of the duty-

cycle-modulated raw DC input….” [25]. Alternatively, one can think of the inductor as

storing energy in its magnetic field while the switch, or transistor, is closed. When the

switch is opened, the magnetic field’s energy is released into the load [26].

Figure 20 shows a circuit diagram of an example buck switching regulator.

The MOSFET Q1 serves as the switch. The inductor L0 acts in concert with the capacitor

C0 to filter the switched voltage.

 40

Figure 20. Example Buck Switching Converter. (After Pressman)

Assume an ideal case where the voltage drop across the MOSFET is zero.

When the MOSFET acting as the switch is closed, the voltage potential across the

inductor L0 equals Vdc- Vo. The change in current with respect to time is given by

Equation 3.3.

 ()dc oV VdI
dt L

−
= (3.3)

Since the difference between input and output voltages is a constant as

well as the inductance, the current trough the MOSFET behaves in a linear manner

producing the positively sloped current IQ1 waveform (d) in Figure 21. One can see the

current waveform (d) increase linearly until time Ton. After time Ton the switch is

opened, turning off the voltage supply.

 41

Figure 21. Buck Switching Regulator Waveforms. (From Pressman)

While the MOSFET switch is closed, the increasing current predicted by

Equation 3.3 creates an increasingly large magnetic field. When the MOSFET is opened

at Ton, the magnetic field present in inductor L0 is still present; it cannot instantly

disappear. Rather, it resists the change in current, but the open switch prevents any

current from flowing from the battery through the MOSFET. Instead, the diode D1

initially supplies an equal current ID1 shown as waveform (e) in Figure 21.

 42

The diode only allows forward current flow and the anode is at a zero

potential with respect to ground. Thus, the cathode must be more negative than zero. In

other words, the cathode must be at a negative potential equal to one diode voltage drop,

Vdiode, below ground. The output voltage, Vo, is unchanged, so the potential across the

inductor is the difference between the output voltage and the negative diode drop voltage.

The difference is equal to Vo – (-Vdiode). Because the polarity has been reversed, a

negative sign is introduced, and current through the inductor is now given by the

Equation 3.4.

 ()o diodeV VdI
dt L

− +
= (3.4)

Now the current flowing through the diode linearly decreases with time at

a rate proportional to the sum of the output and diode drop voltages and inversely

proportional to the inductance. Let I2 be the highest current achieved with the switch

closed and IQ1 be defined as the lowest current when the switch is open. Combining the

waveforms (d) and (e) in Figure 21 produces a current waveform (f) that varies by I2 – I1

about a center value Io.

A combined MOSFET and regulator IC, the L4964, by

STMicroelectronics was selected as the basis of a DC/DC regulation circuit. It is a high-

current device capable of supplying 4 A and able to produce a wide DC output voltage

ranging from a preset 5.1 V to 28 V. It requires few external components, and its

switching frequency is easily adjustable using an off-chip RC circuit up to a maximum of

125 kHz. A toroidal 138 µH inductor by Coilcraft, model DMT-3-138-6, was selected as

the regulator’s inductor. The toroidal design was favored because of the toroid’s inherent

magnetic field shielding. Additionally, the inductor was selected to because its saturation

current, 6.0 A, was greater than the expected maximum current produced by the

regulator.

The switching frequency, fsw, was chosen using the equation below which

assists engineers in choosing inductors for buck switching supplies [27]. Based on the

Creature’s electronics battery voltage, the maximum input voltage, Vin max , was set to

16.5V, and the output voltage, Vout, was set to 5.1V. LIR, the inductance to current ratio,

 43

was recommended to be 0.3, but lower values would produce a more efficient regulator at

the expense of transient current response. For the Creature, an LIR equal to 0.3 was used,

and maximum current, Imax , was set to 4 A. The appropriate switching frequency was

determined to be 21 to 22 kHz.

 fsw =
(Vin max − Vout) ⋅Vout

Vin max

⋅
1
L

⋅
1

LIR ⋅ Imax

The output capacitance depends on the output ripple voltage allowable.

The peak current in the inductor is Ipeak and given by the equation below [27]:

 I peak = Imax +
1
2

∆Iinductor = Imax +
(Vin max − Vout) ⋅Vout

Vin max

⋅
1
L

⋅
1
fsw

Based on the designed 4A maximum current and 22 kHz switching

frequency, a peak current of 4.4 A was expected. Thus, the Coilcraft inductor above was

deemed acceptable.

The output capacitor, Co, in Pressman’s diagram, was chosen using the

equation relating output capacitance to voltage overshoot, ∆V [27]. Given the values

above and a desired voltage overshoot of 0.1 V, the output capacitance was determined to

be 2600 µF.

 Co =
L ⋅ (I peak)2

(∆V + Vout)
2 − Vout

2

The buck switching controller, toroidal inductor, output capacitors,

Schottky diode, and ancillary circuit components are shown in Figure 22, which provides

a circuit schematic of the DC regulator. A Motorola MBR1635 diode, a device designed

expressly for applications such as this one, was chosen for its ability to pass the expected

current. Four 330 µF capacitors in parallel were used in place of a large single capacitor

 44

to reduce the equivalent series resistance. Although the design called for 2600 µF output

capacitance, a larger voltage ripple was deemed acceptable in order to avoid the large

series resistance that such a capacitor would have created had it been installed.

Figure 22. DC/DC Buck Switching Regulator Schematic.

h. 5V Electronics Bus Panel (Second-generation)

Coincident with the construction of the DC/DC switching regulator, a

replacement 5V electronics bus was designed and built by hand from PCB. Whereas the

first-generation bus combined the voltage regulation and load switching functions on one

PCB, the DC/DC buck switching regulator circuit required its own circuit board. Thus,

the functions were separated between two PCBs in the second-generation bus. A side-

effect of this decision was that after the DC/DC regulator was proven, duplicate PCBs

could be made and used on any SMART program robot. In fact, this came to pass.

 45

When the servo motors operating the Bigfoot robot’s mechanical arm required a high-

current 6 V supply, a duplicate of the Creature’s regulator was pressed into service [28].

Although the Creature’s high-current five-volt loads were capable of

operating off the DC/DC switching regulator’s output, it was decided to provide the more

sensitive sensors, specifically those with sensitive analog devices such as the IMU, a

linear voltage regulator supply. The second-generation bus panel includes screw terminal

connections for the regulated voltage from the switching regulator and for unregulated

electronics battery voltage. Five banks of WAGO connectors, each with eight connection

points, are provided for connecting electronics loads. The first-generation bus’ bulky

DPDT switches were replaced with single pole double throw (SPDT) ones, allowing the

board to mount seven switches in a more compact layout. Deficiencies noted in the

earlier board were fixed, e.g. seating wire leads into the WAGO connectors can be easily

accomplished due to the WAGO’s orientation. A schematic of the second-generation

electronics bus panel is provided in Figure 23.

 46

Figure 23. Second-generation Electronics Bus.

 47

D. MICROCONTROLLERS

1. Z-World BL2600 Single Board Computer

The Creature’s operating program runs on a Z-World BL2600 44.2 MHz single

board computer (SBC). The computer is based on the Rabbit 3000 microprocessor, a

descendant of the Zilog Z-80. It has been selected for use in other SMART program

robots because of its ease of programming with the vendor’s feature-rich, proprietary

Dynamic C language and IDE [11]. The BL2600 includes three serial ports capable of

being configured for RS232 communications, and a 10/100 BaseT Ethernet connection

[29]. The microprocessor has 512 kB static RAM and 512 kB flash memory. Its 36

digital I/O are divided into sixteen digital inputs, sixteen software-configurable as input

or output, and four high current outputs. The BL2600 offers several jumper-selectable

options for configuring its I/O. The installed BL2600’s J1 has been set to use an external

5V pull-up voltage from the electronics power bus. In addition to digital I/O, the SBC

has twelve analog I/O pins, eight of which are eleven-bit A/D inputs. Most importantly,

the BL2600 has four twelve-bit D/A outputs.

The BL2600 is connected to the sonar sensor head controller PCB via serial port

C, which uses a three-wire RS232 arrangement consisting of a connection to ground,

TxC, and RxC. The CPU is also connected to the IMU via a serial port F. It uses a three-

wire RS232 and is connected to ground, TxF, and RxF. The table below provides a list of

the pinouts used by the installed BL2600, their function, and the wire label number. I2C

serial communications are bidirectional, and the BL2600’s configurable digital I/O

channels, DIO00 and DIO01, are configured as outputs. Although configured as output

pins, the value of the pin can be read using library functions in Dynamic C. Because they

are open collector, the outputs float to the 5 V pull-up voltage when not held low. An

external 5 V pull-up voltage is supplied to the BL2600 via the +K pin. The BL2600’s

jumper, JP1, is set to provide open collector output using the five-volt power. This five-

volt power and ground are supplied via Second-generation Electronics Bus’s I2C switch.

The digital output grounds are connected to ground via leads to the same circuit. The

connection of the SHARP IR rangers includes two ground connections to ground on the

IR switched portion of the Second-generation Electronics Bus.

 48

BL2600 Pinout Function Wire Label Number
DIO00 I2C Bus SCL 41
DIO01 I2C Bus SDA 40
DIO02 Motor 1 direction 46
DIO03 Motor 2 direction 47
DIO04 Motor 3 direction 48
AV0 Motor 1 analog speed 21
AV1 Motor 2 analog speed 22
AV3 Motor 3 analog speed 20
AIN0 IR 1 analog input 1
AIN1 IR 2 analog input 2
AIN2 IR 3 analog input 3
AIN3 IR 4 analog input 4
AIN4 IR 5 analog input 5
AIN5 IR 6 analog input 6
+K 5V pull up voltage D

2. Z-World BL2000 Single Board Computer

The BL2600 was not available initially in the Creature’s development, and the

robot was designed from the start to use the BL2000, which has two analog voltage

outputs. Herkamp provides an explanation of its capabilities [11]. It was decided early

in development to use an analog voltage signal as the speed signal for each of the three

motors. It was believed that doing so would reduce CPU workload that would otherwise

need to be devoted to producing three PWM signals. Pressing the BL2000 into service as

the Creature’s CPU resulted in an interesting problem that had not occurred previously in

SMART program robots that used two analog motor speed signals for skid steering.

Before motion testing could commence, a method of producing three analog signals

needed to be conceived. To this end, a second BL2000 operating as a slave CPU was

connected via RS435 for the express purpose of producing an analog signal directed by

the master BL2000. This arrangement proved adequate, but a better solution was pursued

during development. Installing the BL2600 reduced power consumption vis-à-vis the

two CPUs and removed the failure mode of a communications loss between the CPUs,

which would have resulted in restricted or possibly uncontrollable motion.

 49

3. Microchip PIC16F690

Two devices were constructed and installed on the Creature using the PIC16F690

microcontroller manufactured by Microchip Inc. PICs are installed in the sonar sensor

head controller and the wheel tachometer. This section describes the microcontrollers.

For a description of the sensor devices, see the following section. The PIC16F690 was

selected for its ease of programming, product support, on-board serial port, numerous

pieces of example code, and widely available documentation. Although the PICs were

programmed in assembly language, C language compilers were available.

Before developing a PIC microcontroller-based solution, a sonar controller PCB

was designed using IC logic gates, binary counters, etc. Its component count exceeded

twenty ICs, though, and its communications scheme was non-standard. A better solution

using a microcontroller to reduce component count was sought. An example of the

savings in component count is the wheel tachometer. In the three-wheel tachometer

circuit a single PIC was used to replace an older two-wheel circuit that required over

eight ICs. Also, a microcontroller solution provided flexibility in both devices’

implementations. If changes to a device were needed, the device could be reprogrammed

to optimize it for another mode of operation. For example, operating parameters of the

sonar, such as maximum range and time delay between sonar ranging attempts could be

adjusted for outdoor use by easily by modifying the code rather than building a new

hardware solution. In addition, the PIC’s built-in counters provided the researcher with a

level of timing accuracy unmatched by the BL2600, which can only time events to 1 ms

accuracy.

The manufacturer, Microchip Technology, provides a comprehensive manual on

the device’s operation, I/O, capabilities, and assembly language syntax [30]. Of note, the

devices have three built-in counters, one with sixteen bit range. Operated at 8 MHz and

1:1 clock prescaling, the internal counters offer 0.5 µs timing accuracy. The PIC16F690

has a PWM module, a capture and compare module, and a built-in serial UART. The

serial port can send RS232 signals via a level shifting IC or I2C communications.

 50

Both PIC16F690 microcontrollers installed on the robot are operated at 8 MHz

using the microcontroller’s built-in oscillator. The sonar sensor head controller circuit

uses one PIC16F690 communicating via RS232 at 57.6 kBd to pass its range data

sentence. The wheel tachometer microcontroller uses I2C bus communications to pass its

wheel speed data to the CPU when requested. The PICs’ programs, in Microchip PIC

assembly language, were written and compiled in the MPLAB IDE running on a Dell

laptop. A PIC Kit II programmer was connected between the programming laptop and

the PIC to load the programs using Microchip’s In Circuit Serial Programming (ICSP),

which allows the operator to program the microcontroller without need to remove it from

the circuit board.

E. COMMUNICATION

Communication with the Creature is accomplished using 802.11g wireless LAN

signals. Two wireless routers have been used on the Creature. In early motion testing,

the CPU’s robot operating program depended on Telnet commands for manual control

while the researcher verified the motion portion of the Dynamic C code and the ability to

produce motion as predicted in Chapter II. Initially, a Netgear Rangemax 240 router was

installed under the tray holding the electronics battery. It’s operation was problematic

and eventually deteriorated to the point that the Telnet session could not be maintained

for periods longer than roughly 30 s when transmissions were sent. Telnet sessions

exceeding eleven minutes were observed when no transmissions were sent, but

preserving the Telnet session by not communicating was an unacceptable condition.

Investigation revealed that the Netgear router demanded excessively high current from its

twelve-volt linear regulator during busy transmission periods. When the linear voltage

regulator could not match the current demand output voltage to the router dropped and

the device reset.

The Netgear RangeMax router was replaced with a D-Link DI-624 AirPlus

Extreme router, operating on 5.0 V. The D-Link router’s AC power supply is rated at 2.5

A. Such routers have been successfully used on other SMART program robots with

linear voltage regulators [10]. Smaller than the Netgear router, it was easily installed in

 51

the same location under the electronics battery tray. The router retains its original

antenna, which has proven completely sufficient in testing to date. Its mass was found to

be 0.3 kg.

The D-Link router was observed to draw 600 to 740 mA when operating and

communicating via 802.11 g. To accommodate this it was the sole load for one LM7805

five-volt regulator on the robot’s first-generation electronics bus. The D-Link router

operated successfully for roughly eight weeks. Unfortunately, the heatsink attached to

the LM7805 proved inadequate, and the router’s power demand caused the linear

regulator to heat excessively. It was believed that the heating triggered the regulator’s

internal thermal protection. During failures, the linear regulator’s output was observed to

drop below 4.90 V, which forced the router to reset itself. A long-term solution to the

router’s current demand is described in the switching regulator section.

F. ENVIRONMENTAL SENSORS

1. SHARP IR Range Sensors

The Creature was designed for semiautonomous operation, which required the

ability to sense obstacles in the environment surrounding it. Considering the cluttered

intended operating environment, the researcher chose environmental sensors based on

two criteria: close minimum range, and rapid update rate. The Creature needed to be

capable of exploiting its holonomic mobility with sensors that could detect obstacles as

close as the periphery of the robot. The Creature was expected to operate at up to 1.0 m/s

maximum. The combination of speed and cluttered environment dictated that sensors be

fitted that could provide a complete scan at roughly 1 Hz to allow the CPU sufficient time

to detect, slow, and avoid an obstacle. The 2Y0A02 SHARP IR ranging sensor was

seriously considered because of its detection range, approximately 18 to 100 cm, and its

quick refresh rate, which was observed on an oscilloscope be 40 ms. The analog output

displayed discreet steps when a target at 15 cm was quickly removed from the FOV.

Herkamp provides an explanation of the operation of the SHARP IR ranger [11].

They are simple to use and produce an analog voltage inversely proportional to the range

of the target. The sensor has an extremely narrow FOV that is 4 cm wide at 100 cm

 52

range [31]. At r equal to 100 cm with s equal to 4 cm, the angular FOV, θ, would be

0.040 radians. The number of samples, N, needed to sense the obstacles at 100 cm, using

θ equal to 40 milliradians, is given by the Equation 3.5:

 2N π
θ

= (3.5)

It would have required 120 samples to completely sense the 360º surrounding the

robot without gaps. The number of samples posed a problem, but solutions using eight to

ten devices atop a scanning a detector head were feasible. More troubling, the devices

showed significant variation in their analog output voltage when tested in the lab against

objects at a constant distance. Specifically, the output voltage was observed to be 0.7 V

when viewing a Ø 0.5 inch smooth steel rod at 80 cm. The output voltage dropped to

0.37 V when the smooth rod was replaced by a Ø 0.5 inch threaded rod. A wooden meter

stick placed with its widest side normal to the sensor’s FOV produced a higher output

voltage, 1.0 V, despite being placed at 1 m. Based on these observations the IR rangers

were deemed unacceptable for use as the primary environmental sensor, and the decision

was made to pursue ultrasonic sonar for this role.

Though not employed as the Creature’s primary sensor, IR rangers were installed

to provide a limited coverage of the space below the sonar sensor head’s view. Figure 24

shows the equilateral arrangement of the IR rangers. Two IR rangers are installed

antiparallel to each other and perpendicular to each of the three motor mounts. The

sensors are placed at a height approximately 6 cm above the surface the robot is operating

on. A total of six sensors are installed, numbered one through six per Figure 24. Sensors

one and two act as a sensor pair, as do three and four, and five and six. The FOVs of the

sensors cross at three locations, approximately 10 cm from the edge of the chassis at an

position midway between each wheel. This arrangement provides a virtual bumper when

the robot is driven in one of its three principle directions: 60º, 180º, 300º measured

clockwise from the Y axis.

 53

Figure 24. IR Ranging Sensor Installation.

Experimental observation of aluminum soda cans in the lab provided threshold

voltage levels that the robot operating program uses to indicate the presence of an object.

These cylindrical targets were insensitive to target orientation, unlike the meter stick

described above. At the intersection of the sensors, output voltage was observed to be 2.2

to 2.4 V. A voltage of 1.4 V indicated the presence of an object at 50 cm from the sensor,

or 33 cm from the front edge of the chassis. If the robot were moving along one of its

principle motion directions, such an object might collide with the wheel on the side

opposite the sensor. Threshold values were set based on observation of the robot’s

performance while conducting its random walk algorithm.

The six sensors’ analog outputs are connected to the CPU breakout panel. The

panel’s function is to provide I2C bus connections and allow for easy CPU change out.

For example, if future researchers install a different CPU, the IR rangers’ wiring can

remain intact, and the new CPU will simply need to be connected to the breakout panel.

The panel also provides the sensors with five volt DC voltage for operation. The IR

sensors are switched via the 5V Electronics Bus Panel.

 54

2. Scanning Sonar Sensor Head

a. Design Considerations

The primary environmental sensor for the Creature is its scanning sonar

sensor head. Although SHARP IR rangers had desirable characteristics, such as fast

refresh rate and close minimum range, the inability to accurately report range and the

large number of scans required to completely scan all azimuths prompted the adoption of

a conventional sensor, ultrasonic sonar. The Polaroid 49.1 kHz monostatic electrostatic

sonar transducer and 6500 ranging module, manufactured by Senscomp, has been the

most widely used sensor in previous robotics research [32]. The transducer’s beam width

is approximately ±15º [33]. Using Equation 3.5, with θ = 18º or 0.1π, the number of

scans, N drops to 20.

The SensComp 6500 ranging module accepts digital initiation, INIT, and

blanking inhibit, BINH, signals. It outputs a digital echo signal that goes to a high logic

state when an echo is detected. Its range accuracy is a function of the timing accuracy

between the time INIT is sent high and the time the echo signal goes to a high logic state.

Previous robotics class work at NPS had demonstrated centimeter accuracy using digital

timing devices coupled to the SensComp 6500 modules [34]. This range accuracy was

superior to that achievable using the SHARP IR rangers’ analog outputs.

The researcher did not have a sufficient quantity of transducers and

ranging modules to permit mounting eighteen fixed devices around the periphery of the

robot. Further, the Creature’s components and chassis did not afford enough space to

mount so many fixed devices. It was decided to use fewer devices and scan them in

azimuth, but this solution created added complexity.

The sonar system consists of four components: a sensor head controller, a

servo motor, four ultrasonic transducers, and four ranging modules. The scanning sonar

sensor head needed to complete the following tasks:

• mount the sonar transducers and mechanically scan them

• regularly send the INIT pulse to multiple SensComp 6500 ranging
modules

 55

• time the interval between INIT pulse and receipt of echo signal, i.e. the
TOF

• store TOF data

• communicate TOF data

b. Sonar Mechanical Mounting and Pointing

Four sonar transducers were mounted to a square section of perf board,

measuring three inches on a side. Perf board was chosen because of its light weight and

pre-drilled holes, which allowed easy alignment of the orthogonally-mounted

transducers. To limit rotational inertia of the scanning head, construction emphasized

light-weight parts. It was feared that a heavier head with greater rotational inertia would

not accelerate and decelerate to a stop precisely enough when the head was scanned at

high speed, roughly one degree per millisecond. This would have caused misalignment

between the sonar transducer’s beam pattern at the time it was fired and its intended

ranging sector.

The transducers and perf board were mounted to a Futaba S3003 RC

servo, which provides the rotational motion under the command of the sonar sensor head

controller. The manufacturer states that the servo requires 0.23 s to move 60º when

supplied 4.8V or 0.16 s to move 60º when supplied 6.0V. Equivalently the servo can

move at a rate of 261º/s and 375º/s at 4.8 and 6.0 V, respectively. It can generate 3.2 kg-

cm torque at 4.8 V [35]. The servo included a circular servo horn, or mount, with the

numbered labels at 90º intervals. The servo positioned the flange to its rightmost limit

when a 0.30 ms signal was applied to its position signal input. With the servo case

aligned with an imaginary Y axis, the Futaba servo’s number 1 mount point was observed

to move to a position 90º to the right, or aligned with an imaginary X axis. The number 1

mount point’s position was observed and recorded for various control pulse widths. The

angular position of the number 1 mounting point and the pulse width obeyed the linear

relation below, where T is the control pulse width in microseconds, and θ is the angular

position in degrees from far rightmost limit of the servo’s rotation.

 300 10
1

sT s µµ θ⎛ ⎞= + ⎜ ⎟
⎝ ⎠D

 56

c. Function of PIC Microcontroller and Sonar Circuit

All other tasks listed above were accomplished using a PIC

microcontroller mounted to a purpose-built PCB, designed by the researcher using

Cadsoft’s Eagle circuit layout software. The PCB was manufactured by Advanced

Circuits. The PIC16F690’s program is explained in chapter 4, and while the construction

of the PCB and the sensor head controller is described below. Briefly, the PIC was

programmed to send the appropriate servo pulse to the RC servo to position it to the

required azimuth. Four discreet digital output pins on the PIC were connected to the

INIT signal inputs of the four SensComp 6500 ranging modules. The PIC was

programmed to fire a sonar, and count the oscillations of its internal oscillator between

the time the INIT signal was sent high and the time the echo signal was observed to go to

a high logic state. The four modules’ ECHO signals were multiplexed to simplify the

PIC’s timing operation. The four ECHO signals were combined using an XOR gate,

which resulted in a virtual four input OR gate. Thus, when any one ECHO signal went to

a high logic state, the combined echo signal input to the PIC also went to a high logic

state and provided a signal to cease counting the internal oscillator, stopping the TOF

timing.

A MAX232 RS232 level shifting IC was installed in the circuit to shift the

PIC’s serial data voltages to the RS232 standard. The ranging modules produce

noticeable electronic noise on the supply, ground, and echo lines when the transducers

are fired [24]. Two 1000 µF capacitors were installed in parallel to reduce noise on the

PCB’s five-volt supply during sonar firings. Figures 25 and 26 show the circuit

schematic for the sensor head controller.

The servo sensor head controller is powered by the electronics power bus

and uses five-volt supply. The PIC16F690 and SensComp 6500 ranging modules receive

power via the Sonar switch on the Electronics Bus Panel. The RC servo requires five-

volt power as well, and is separately switched via the Servo switch on the same panel.

 57

Figure 25. Sonar Sensor Head Controller Circuit.

 58

Figure 26. Sonar Sensor Head Controller Circuit Page 2.

 59

G. POSITIONING SENSORS

1. Wheel Tachometers

The wheel tachometer system consists of three binary optical encoder targets,

three optical detectors, and a PIC16F690 microcontroller responsible for measuring the

frequency of the signals produced by the detectors. Each optical target consists of an

aluminum disk screwed into a mounting collar with a hole through its center. The collar

was designed to allow the motor shaft to slide through its center. The collar was made to

rotate with the motor shaft by two set screws. A Ø 1.75 inch circular target printed on

transparency material with 100 sectors, alternating black and white, was affixed to the

aluminum disk with glue. There are 50 sectors of each color. The black sectors provide

an optical target for a Hamamatsu P5588 photo detector, which produces a logical high

signal when a black object is detected. The Hamamatsu photodetectors are designed for

applications such as detecting the presence of paper inside a laser printer and are limited

to ranges of 1 to 3 mm [36]. Figure 27 shows a schematic of the P5587 sensor, which

produces a high output when a light colored target is passed in front. The diagram shows

an example circuit and the internal components, including the LED input diode, current

amplifier, Schmitt trigger, and output phototransistor, visible. The sensor incorporates

built-in hysteresis to ensure the transitions between logic states are free from noise. Its

open collector output requires a pull-up resistor RL to pull the IC’s Vo output up to a 5.0

V high logic state.

 60

Figure 27. Hamamatsu P5587 photodetector circuit. (From Hamamatsu)

As the motor shaft rotates so does the circular target, passing a continuous series

of alternating black and white sectors in front of the Hamamatsu detector. In the P5588

as the edge of a black to white sector passes the detector, the reflected light off the target

is detected and the current amplified. On a high to low transition, if the detector’s

forward current exceeds 10 mA, the high logic state is triggered and the transistor is

switched allowing the optical detector’s output to be pulled up to 5.0 V. The effect of

passing a repeating series of alternating sectors is a clock signal with frequency

proportional to the motor shaft speed. With a 100 sector optical target installed the

Hamamatsu sensor generated a clock signal with 50 cycles per shaft revolution, e.g. 50

cycles per two π radians angular rotation.

All three motor shafts have a target disk mounted to them. Three compact PCBs

were built to mount the detector, pull-up resistor, and noise capacitor. These PCBs were

located inside the three motor mounts. Figure 28 shows a photograph of one optical

target and its detector inside a motor mount box. The detector PCB is on the right, and

one can see the Hamamatsu photodetector slightly to the right of the center where it is

mounted in close proximity to the target disk, approximately 1 mm.

 61

Figure 28. Wheel speed optical target disk and detector.

By loosening the collar’s set screws, one can adjust the position of the target

along the shaft’s axial direction until it is detectable by the Hamamatsu sensor, at which

point the set screws can be tightened. It was observed that care must be taken when

tightening the set screws to prevent the target disk from being tilted. If the target disk

“walks,” then it will no longer be normal to the optical detector, and portions of the disk

will be farther from the Hamamatsu detector when they pass its FOV. Some sectors were

observed to fail to register due to the target’s excessive distance from the detector. If the

target is placed too close to its detector, the two can rub and result in a damaged target.

The effect is a target with a “dead” section where no clock signals are generated.

2. Inertial Measurement Unit (IMU)

The Creature is the first SMART program robot to mount an IMU. Because the

intended operating environment would not allow for reliable receipt of GPS signals, it

was decided to incorporate an IMU to research inertial navigation. The Onavi Falcon GX

was selected based on its cost, ease of integration with the existing robot CPU via RS-

232, and its features. The Falcon incorporates three orthogonally mounted linear

 62

accelerometers and three angular rate sensors. The combined output is continually

reported via RS-232 in either ASCII or binary format. Immediately after power up, the

FalconGX allows the user to configure its RS-232 baud rate, and the data update rate.

The default RS-232 data rate is 9600 b/s, and the update rate 1Hz [37]. To decrease the

time required for receipt of the complete IMU data sentence, the RS-232 rate was

changed to 19.2 kb/s. The update rate was set to 20Hz in order to provide the BL2600

with timely rotation rate data when turning, since the Creature was observed to be

capable of rotation in place at rates exceeding 180º/s.

The IMU was mounted to an aluminum plate that provided added mass and

served to damp out small amplitude vibrations. The plate and IMU were attached with

Velcro to the chassis in the geometric center of the robot. The IMU was installed such

that its positive X, Y, and Z axes were aligned with the robot’s X, Y, and Z axes,

respectively. Velcro allowed for easy adjustment of the device to align it with marking

on the chassis that indicated the direction of the robot’s Y axis. The IMU’s Z axis

coincides with the robot’s Z axis, but according to the manufacturer, the IMU’s positive z

rotation is opposite to the sign convention used in the robot’s frame of reference, i.e.

positive z rotation about the IMU’s Z axis is clockwise as viewed from above and would

be considered negative rotation about the robot’s Z axis in the robot’s frame of reference.

Figure 29 shows an illustration of the orientation of the IMU’s linear accelerometer axes

and rotation sense of the rotation rate sensors. Note, that positive IMU rotation rate data

about its Z axis corresponds to negative rotation in the Creature’s frame of reference

introduced in Chapter II.

 63

Figure 29. FalconGX IMU Axes. (From ONavi)

The IMU’s linear accelerometer and rotation rate sensors are analog devices

whose output is converted to 10-bit digital representation by built-in ADC. The 10-bit

data scheme assigns zero g, or 0.0 m/s2, to a value midway between zero and 1023, i.e.,

equal to 511. Stationary in the lab, the IMU reported -1 g, or - 9.80 m/s2, acceleration

along the Z axis,. The reported data is a 10-bit representation of the IMU’s analog device

readings, and it must be scaled appropriately if one desires MKS units. The equation

below gives the necessary conversions for the reported linear acceleration, a 10-bit

representation of the device’s full scale 4g range, to acceleration in MKS. Rotation rate

must be scaled as well using the full-scale value of 300º/s [37].

2
2

2

511 9.80 /[/] 4
1024

511 300 2[/]
1024 360

reported value m sacceleration m s g
g

reported value radrotation rate rad s
s

π

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

D

D

 64

Data are reported to the BL2600 in ASCII format, which allows easier

interpretation by humans. It was decided to use this format during integration and

testing, despite the fact that binary communications would decrease the total bytes, and

thereby the time, needed to transmit the IMU’s data sentence.

 65

IV. SONAR SENSOR HEAD CONTROLLER MICROPROCESSOR
ASSEMBLY LANGUAGE PROGRAM

A. PROGRAM TASKS

The hardware components associated with the sonar sensor head controller have

been discussed previously. To provide flexibility and reduce hardware component count

a microprocessor solution was developed to trigger the sonar ranging modules and

measure the TOF. This section describes the PIC16F690 microprocessor’s assembly

language program. The microprocessor is responsible for the following tasks:

• Sending individual INIT pulses to different SensComp 6500 ranging

modules

• Timing the interval between INIT pulse and receipt of echo signal, i.e. the
TOF

• Storing unique TOF data for each sector around the robot

• Communicating stored TOF data to BL2600

B. SONAR CIRCUIT AND PROCESSOR TIMING EXPLANATION

A timing diagram for two of the four sonar channels is provided in Figure 30. It

shows two sequential sonar ranging attempts. In the first ranging attempt, the number

four SensComp 6500 ranging module sets its ECHO signal high after detecting a valid

return echo. In the second ranging attempt, the number three ranging module does not

detect a valid return echo, so its ECHO signal remains low. In the first case the sonar

sensor head controller PIC saves the value of the sixteen-bit counter when the combined

echo transitions from a low to high logic state. After the value is saved, the timer is

allowed to overflow to ensure the period between RC servo pulses is approximately 30

ms. In the second, no echo is detected, so the sixteen-bit timer’s value reaches its

maximum, and the timer overflows. The PIC treats this as a non-detection in its code.

 66

Figure 30. Sonar Controller Timing Diagram.

C. PROGRAM FLOW

The program begins by configuring various registers. The PIC is configured to

use its internal RC oscillator for the clock source, the code sets its speed to 8 MHz. It

configures all inputs to digital and the appropriate inputs and outputs per the table above.

TIMER1 is configured to increment at a 1:1 ratio with the instruction clock, which is one

quarter of the processor frequency, 8 MHz. Thus, TIMER1 increments every 0.5 µs. The

RS232 UART is configured for asynchronous serial operation at 57.14 kbit/s, eight-bit

data, with no parity. Figure 31 shows a flow chart that describes the microprocessor’s

program. The program’s flow chart is continued on Figure 32.

The program uses a 20 to 35 ms time period as the primary building block for all

activities because the RC servo must receive its positioning signal at an interval on the

order of 20 to 40 ms. After configuration and initialization, all program actions take

 67

place within a regular 20 to 40 ms period or time block. The main loop begins by

moving the servo sensor head to its initial position. The subroutine SubSendServoPulse

is called to send the servo a high logic pulse. The pulse’s duration is proportional to the

angular position desired. The subroutine uses the value of the position variable in a case-

switch statement to choose the length of the high pulse. The RC servo signal must be

repeated after roughly 20 ms, and the program calls the subDEL20 subroutine to produce

the delay. If the position is the initial position, then a longer delay consisting of eight

iterations of the servo pulse and 20 ms delay is provided in the program to allow the

detector head extra time to move from its final position to the initial position, an angle of

72º. Based on the Futaba S2003 specification rotation rate of 261º/s, one would expect

the rotation from the last position to the starting, initial position to require 276 ms [35].

When the servo is only required to move 18º between sonar firings, the servo pulse and

20 ms delay is repeated just three times because the smaller angular displacement

requires less time for the servo to complete.

After the servo moves to the correct angular position, the program commands a

sonar ranging. Each of the four sonar transducers is triggered sequentially beginning

with sonar number four. The appropriate INIT signal output is taken to a high logic state,

causing the corresponding SensComp 6500 ranging module to trigger its sonar ranging

cycle, and the transducer transmits sixteen pulses. The PIC’s enhanced capture and

compare module is configured to trigger on the rising edge of the combined ECHO signal

and the associated interrupt flags are cleared. Then TIMER1’s count is cleared and the

counter started.

The SensComp 6500 module has a default 2.38 ms delay after transmitting the

sixteen sonar pulses to prevent confusing the transducer’s ring down as a return echo

[24]. Assuming the speed of sound in air equals 343 m/s, this limits the minimum range

to 80 cm. It was decided that this minimum range was unacceptably large for the

expected operating environment. At the risk of detecting the ring down as echo the PIC

overrides the default echo blanking by sending the blanking inhibit BINH to a high logic

state after 1 ms. The 1 ms BINH delay has been observed to provide a 20 cm minimum

range.

 68

Figure 31. PIC16F690 Sonar Sensor Head Controller Program Flowchart.

 69

Figure 32. Continuation of Program Flowchart.

Then the PIC begins a loop that checks the interrupt flags for either receipt of an

echo or a TIMER1 counter overrun. If the SensComp 6500 ranging module detects a

valid echo, it sends its ECHO signal high. The four module’s ECHO signals are

combined via a XOR gate. If the combined echo transitions from a low to high logic

state, both of TIMER1’s counter bytes are saved, and then TIMER1 is allowed to finish

 70

counting up until overflow. This ensures the process’ duration takes 33 ms regardless of

the length of time between sonar firing and reception of the echo, and it guarantees the

RC servo pulse will be sent again after an appropriate delay.

The most significant byte is tested to determine if the counter value indicates

receipt of an echo from a target at a range that exceeds the limits of the reportable range.

These TOF values are set to a literal value 0x02 to flag the data as no contact. The most

significant byte and least significant byte of the counter variables are combined to make a

one-byte value of the count. The 27 bit through the 214 are retained, and the byte is saved

to an array whose index corresponds uniquely to the combination of sonar number and

servo position using the relation below.

 4(5) (4)array index position sonar number= − + −

The variable SonarNum is decremented to allow the PIC to complete a sonar

ranging with each of the sonar modules from four to one. The inner loop is repeated. If

decrementing the variable results in a value of zero, then all sonars have been fired and

the position variable is decremented. The position loop is repeated until decrementing

the position variable results in a value equal to zero. Then the position value is reset to

its initial value, five, and the outermost loop begins again with the sensor head being

commanded to move to the initial position.

D. PROGRAM OUTPUT

The PIC transmits the one-byte counter representation of the TOF through its

built-in UART. To ensure the robot’s BL2600 CPU is not delayed any longer than

necessary, the PIC transmits all data available as part of the subroutine that is responsible

for sending the RC servo pulse. Rapidly refreshing the data also ensures that the CPU is

afforded many opportunities to receive the range data. There is no need for the CPU to

interrupt its processing to read in the PIC’s transmission. The CPU can expect to receive

the 20 range data bytes at approximately 20 to 33 ms intervals. The communicated

sentence uses flags with hexadecimal values that are outside the counter values for

 71

minimum and maximum counts. Since the reported range is limited to 250 maximum,

values 251 to 255 are available for the program’s use as flags. The minimum range

should correspond to a count of 19 or 20, which allows values 0 to 18 for use as sentence

flags. The hexadecimal value 0x02 indicates no echo was received or that the echo was

detected beyond roughly 2.5 m. The values 0xFE and 0xFB indicate sentence start and

end, respectively.

Figure 33 shows an example data sentence from the sonar controller. The

sentence is ordered such that the first range byte corresponds to the sector aligned

approximately with the robot’s Y axis. Moving clockwise around the robot, succeeding

bytes represent the range for the next eighteen-degree sector. Thus the tenth data byte

corresponds to the sector roughly aligned with the robot’s negative Y axis. After the

twentieth data byte is sent, the PIC transmits an integer value between 0 and 19 to

indicate which array value is most recent.

Figure 33. Sonar Range Data Sentence.

Note the integer value uses the PIC’s indexing scheme, which corresponds to the

sequence that the sonars were fired. The PIC stores the data bytes with an array index

according to the order the sonars ranging attempts were made. Because the twenty

azimuth scans are interleaved, the PIC’s internal data array index does not correspond to

the same clockwise azimuth order that is reported. Translating between the two indices is

accomplished with a simple lookup table, and one can determine how time-late each

range is for any sector.

 72

Sonar Sentence Order Azimuth (relative to Y axis) PIC Data Array Index
0 6º 2
1 24º 19
2 42º 15
3 60º 11
4 78º 7
5 96º 3
6 114º 16
7 132º 12
8 150º 8
9 168º 4
10 186º 0
11 204º 17
12 222º 13
13 240º 9
14 258º 5
15 276º 1
16 294º 18
17 312º 14
18 330º 10
19 348º 6

Table 2. Sonar Data Array Index to Azimuth Cross-reference.

If one assumes the robot travels in a straight line without rotating between

received data sentences, then older range readings can be adjusted for robot motion by

multiplying the robot’s velocity vector times the time since the sonar detection was

received. The effect is to move all range readings to objects, except the current one, by a

distance proportional to the apparent motion between the robot and the object.

The following table lists the connections used by the PIC in addition to the In-

Circuit Serial Programming (ICSP) pins.

 73

Description PIC Connection IC Pin Number
RC Servo Position RC0 16
Sonar 1 INIT RA2 17
Sonar 2 INIT RB6 11
Sonar 3 INIT RA5 2
Sonar 4 INIT RB4 13
Blanking Inhibit (BINH) RA4 3
Combined ECHO RC5 5
RS232 TX TX 10
RS232 RX RX 12
+5 V VDD 1
GND VSS 20

Table 3. PIC Connections to Sonar Circuit.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

V. THREE WHEEL TACHOMETER MICROPROCESSOR
ASSEMBLY LANGUAGE PROGRAM

A. DESIGN CONSIDERATIONS AND PREVIOUS WORK

The functionality and flexibility of the PIC16F690 microcontroller prompted the

researcher to develop a wheel tachometer based solely on it. Until the Creature, SMART

program robots had not incorporated wheel speed sensors, nor been equipped to perform

odometry calculations [10, 11]. Based on previous NPS robotics class work, the

researcher was familiar with binary encoders and odometry using optical targets and

detectors. A hardware solution had been built, tested, and demonstrated on a chassis

similar to Herkamp’s, but this device was extremely restricted in its usefulness and used a

very rudimentary three wire serial communications scheme to “bit bang” its data to a

BL2000 [34]. Further, the device attempted to measure distance directly through a count

of the encoder’s rotation.

B. TACHOMETER PROBLEM SOLUTION

A better solution needed to be found. Using the same type of optical targets and

sensors, a more robust and flexible solution was devised using a single PIC16F690 in

place of the PCB described above, which included seven ICs. The PIC allowed the

researcher to use common I2C bus communications and added unparalleled flexibility

through implementation of a software solution. With a software-based PIC solution, the

tachometer can easily be modified to operate on other robots with two, three, or four

odometry sensors. Further, the actual sensor is immaterial; the PIC can be adapted to

work with any regularly occurring digital signal such as one from a Hall Effect sensor.

The PIC sensor could be used to provide feedback about any motor shaft motion, such as

motors used to position a robotic arm. This adaptability was a design goal throughout the

development. Solutions should be flexible enough to allow for their implementation on

follow-on SMART program robots.

 76

Whereas the earlier device used hardware to measure displacement, an angular

velocity measurement technique was selected for the Creature to smooth out the observed

data. The microcontroller’s fundamental task is to count the number of cycles reported

by each sensor in a fixed period. The PIC16F690 used for wheel speed measurement

accepts three inputs, one from each Hamamatsu optical sensor observing the Creature’s

three motor output shafts. The sensors provide a digital signal that goes to a high logic

state when the black portion of the binary encoder wheel passes through its FOV. The

PIC’s program counts the number of transitions, i.e. changes from high to low or low to

high logic states, in a fixed period of time. If one assumes that one cycle includes two

transitions, dividing the count of the transitions by two times the period gives the

frequency in cycles per second of the motor shaft. A 250 ms period was chosen as the

sampling period. A longer period would have smoothed the frequency data more and

mitigated the observed optical sensor errors due to occasional failures to detect some

target sectors. Additionally, detecting low frequency signals (10 to 17 Hz) associated

with very slow wheel speeds required a longer sampling time. Longer periods, though,

obscured short-term variations in motor frequency, for example during accelerations.

Ultimately, a 250 ms period was chosen as a compromise. Further, it allowed for a one-

byte data value at the maximum expected signal frequency of 220 to 250 Hz, and

simplified the assembly language mathematics, since multiplication by two consists of a

simple bit shift.

In addition to measuring the motor shaft frequencies, the PIC must also store the

data and communicate it to the robot’s CPU, the BL2600. It was decided to use I2C bus

communications for this application because the CPU’s serial ports were committed to

sonar and IMU data communications. Rudimentary communications protocols outside

the mainstream have been used on some earlier odometry sensors, but such protocols

violated the design goal that devices built for the Creature be adaptable to a wider range

of vehicles. Using the I2C bus protocol allowed the CPU, serving as bus master, to poll

slave devices at its convenience. By using the I2C protocol the data was available to the

CPU with minimal delay. I2C uses a simple bi-directional, two-wire hardware layer that

was already installed, and the CPU’s Dynamic C language provides a feature-rich I2C

 77

function library. Previous SMART robots, such as Herkamp’s Bigfoot, have utilized I2C

communications, but the bi-directional nature of the signals coupled with I/O limitations

of the BL2000 forced the researcher to divide the SCL and SDA lines into an input and

an output pin for each signal [11]. The BL2600 installed on the Creature was configured

to use sinking current outputs, and achieves true bi-directional serial communications

through two pins.

C. PROGRAM FLOW

Figures 34, 35, and 36 show flow charts of the wheel tachometer assembly

language program. The main program element is a loop during which the PIC monitors

three digital inputs. If a transition, a change in the digital input from a low to high logic

state or high to low logic state, is detected, then the register associated with that motor

shaft count is incremented. A short 40 µs delay is implemented after the three signals are

tested for a transition in their logic states to allow for rise time in the digital signal lines.

The PIC’s TIMER1 counter is seeded with a literal value prior to executing the loop.

During code execution, the TIMER1 counter increments automatically from the seed

value until the counter overflows, which occurs after 250 ms have elapsed. The overflow

sets an interrupt flag.

The remainder of the program, shown in Figure 36, is an interrupt service routine

(ISR) handler. Because the researcher lacked extensive assembly language programming

experience, example code to handle the ISR tasks and I2C communications was found

[38]. The example was modified to measure the wheel frequencies. The code monitors

for ISR triggered by the overflow of the counter, which signals the completion of the 250

ms timing. If the ISR was caused by the counter overflow, the counter’s overflow flag is

reset along with the seed value for the counter for the next 250 ms period. To produce an

output value in cycles per second from the number of transitions in 0.25 s, and assuming

one cycle per two transitions, the code multiplies the number of transitions by two. The

three values representing the frequency in cycles per second for the wheel rotational

speed are saved to separate registers so as to be available when requested by the I2C bus

master.

 78

Figure 34. Tachometer Program Flowchart Page 1.

 79

Figure 35. Tachometer Program Flowchart Page 2.

D. DATA OUTPUT

The ISR hander also parses ISRs triggered by I2C communications. A complete

I2C bus communications description is beyond the scope of this thesis. One should

consult Philips Semiconductor’s comprehensive document for more information [39].

 80

Figure 36. Tachometer Program Flowchart Page 3.

Briefly, the BL2600 serves as the I2C bus master and controls the serial clock

line, SCL. It initiates all communications at its leisure. To request wheel tachometer

data from the PIC serving as the tachometer the BL2600 sends a start sequence, then the

 81

tachometer’s seven-bit address, 0xD0, with the LSB clear. The PIC’s built-in

synchronous serial port (SSP) module detects the I2C start sequence and verifies that the

address matches the seven-bit address set in the configuration portion of the code. If the

address matches, the PIC’s serial port triggers an interrupt condition that can be parsed in

the ISR hander. Next the BL2600 sends the byte of the register whose data it is

requesting to read, and then resends the start sequence. Each event triggers an ISR and

the ISR handler calls the serial port handler, SSP_Handler. In the serial port handler, the

serial port’s status flags are sequentially evaluated to determine which state of the I2C

communications sequence is occurring, i.e. start sequence, write to PIC, read from PIC,

etc. In State 3 of the serial port handler, the requested register byte sent from the BL2600

is tested to determine which wheel speed value was requested. The appropriate register

corresponding to one of the three wheel speeds is saved to the PIC’s working register,

WREG, in anticipation of the BL2600’s command to transmit data. In State 4 of the I2C

communication sequence, the BL2600 sends the PIC’s seven-bit address with the LSB set

to command the PIC to transmit its data. The PIC responds by calling the WriteI2C

subroutine to write the value of the wheel speed in cycles per second, to the serial port’s

buffer for transmit to the BL2600.

The BL2600 Dynamic C code provides a feature-rich set of functions to

communicate with I2C devices. Although the I2C specification provides for data rates to

400 kbit/s, the Creature’s I2C communications were limited to a maximum 100 kbit/s due

to the published maximum data rate by the Devantech digital compass [40]. Operation at

100 kbit/s was not deemed possible due to the BL2600’s inability to provide for precise

timing delays below 1 ms and for fear of introducing errors due to missed bits. In place

of timing delays using Dynamic C’s millisecond timer function, the BL2600’s I2C code

was edited to use a short for loop to count from zero to four between I2C clock pulses.

Observations of the SCL and SDA serial data transfers were made using an

oscilloscope. The for loop delays the processor approximately 25 µs between I2C SCL

clock pulses, which provides a 20 kbit/s data rate. A complete I2C sequence to request

one byte of data and read it in from a slave device, i.e., the Devantech CMPS03 magnetic

compass, was observed to take 3.4 ms. This value is approximately three times longer

 82

than predicted based on the assumed number of bits that must be clocked out by the

master to communicate the data between the devices. The BL2600’s multithreading

operation is the likely cause of the increased time required, since the processor cannot be

guaranteed to execute code sequentially.

 83

VI. ROBOT OPERATING PROGRAM

The Creature’s operating program is written in Z-World’s proprietary Dynamic C

9.21 programming language, which resembles the C language, and runs on a BL2600

SBC. Like previous SMART program vehicles, the program was edited and compiled

using the associated integrated development environment (IDE). The operating program

is included in Appendix F.

A. CREATURE’S OPERATING PROGRAM REDESIGN MOTIVATION

A number of robots preceding the Creature have used the Dynamic C language as

the basis for their operating programs. Miller employed an earlier Dynamic C version,

7.04, with the BL2000 SBC [10]. Herkamp and Jun’s Bigfoot robot used the

combination of Dynamic C 9.21 and the Z-world BL2000 SBC with success [11, 28].

The monolithic program used by Miller was an outgrowth of earlier work on the Bender

robot, while Herkamp’s use of version 9.21 of Dynamic C represented a new line of

operating program development [10, 11]. A complete description of the prior operating

programs’ organizations is beyond the scope of this thesis. Prior operating programs

displayed severe time lags during their program loops, though. Herkamp noted the

Bigfoot operating program required 665 ms to complete its I2C communications with the

CMPS03 digital compass, and Bigfoot occasionally failed to react in time to avoid

collision with obstacles [11].

B. OPERATING PROGRAM IMPROVEMENTS

The researcher decided that a design goal for the Creature should be

computational load distribution. In effect, it was decided to eliminate low-level tasks

from the CPU’s robot operating program to free its processor for higher-level tasks to

reduce the robot operating program’s loop cycle time. The sensor section describes how

PIC microcontrollers were used towards this end. Computational load distribution was

merely the first step in improving program execution speed. The Bigfoot Dynamic C

code was abandoned. Code from previous NPS robotics class work by Le, Cole, and

Gamble provided a starting point, instead [41]. Its TCP/IP functions had been

 84

successfully demonstrated in class work, and showed promising improvements, namely

reduced communications latency. It featured a modular, procedural structure with

execution branching off to complete a variety of tasks handled by discreet functions.

The Creature’s operating program substituted Dynamic C library functions for

I2C communications. Inefficient, CPU-intensive delays using loop counters were

eliminated. Expected delays between the CPU and peripheral devices such as sensors,

were accommodated with Dynamic C’s built-in multithreading costatements. Code

associated with equipment that was not installed, such as a Global Positioning System

(GPS) receiver, was deleted. Much new code was created to interface with the newly

created sonar sensor and three-wheel tachometer and to operate on the received data.

IMU code was developed. Directional control feedback was added using the IMU

rotational rate data about its Z axis. Navigation was approximated using a flat-Earth in

the vicinity of the robot, and navigation from wheel odometry was added.

C. OPERATING PROGRAM FLOW

The program begins by declaring variables whose scope is limited to the main

function. Then the BL2600’s digital and analog inputs and outputs (I/O) are configured

followed by a function call to initialize the robot, which effectively sets various global

variable default values and sets up serial communications between the CPU and the sonar

and IMU. The operating program then proceeds to enter its main loop, which comprises

the sixteen concurrent costatements shown in Figure 37. Using the multithreaded nature

of Dynamic C’s execution of costates, the program employs shorter or longer time delays

before execution is allowed to return to a particular costate. High priority tasks use a

short time delay between costatement revisits, while lower priority tasks give up

execution for longer periods.

 85

Figure 37. Flowchart of Robot Operating Program.

1. Port Checking and Waypoint Costates

The first two costatements in Figure 37 check for the presence of TCP/IP data

packets on their ports. They are responsible for receiving the TCP/IP packets through

 86

function calls to receive_packet_from_port. The Waypoint costate is triggered if

waypoint data is received by the above costate. It saves the waypoints transmitted by the

laptop’s Java graphical user interface (GUI) and calls functions to convert and save the

waypoint data into a Cartesian format. Next it initializes navigation and saves a waypoint

array before starting the robot’s autonomous operation, setting its direction to drive,

setting the velocity, and clearing the manual_control_flag.

2. I2C Compass and GUI Feedback Costates

The program attempts to communicate with the I2C digital compass and read in

the magnetic heading. A feedback costatement alternately sends the saved magnetic

heading variable or robot position data to the GUI. Because the GUI expects position to

be reported in latitude and longitude, the robot’s Cartesian position is used to derive the

reported position in the DR Costate.

3. Sonar Ranging Costate

The BL2600 does not trigger sonar ranging attempts, per se. Rather, the robot

operating program uses the Sonar Ranging Costate to conduct RS232 serial

communications with the Sonar Sensor Head Controller. The costate begins by flushing

any data present. Then it uses Dynamic C’s waitfor function to periodically check for

the presence of serial data from the PIC serving as the sensor head controller

microprocessor. When data is initially detected, the operating program allows the

complete sonar range sentence to be transmitted and then calls the getSonarRanges

function to read the data present in the serial buffer. In this manner, the CPU can

simultaneously continue executing other costates while the relatively slow peripheral

communications take place. The sonar ranges to objects in the twenty azimuth bins

around the robot are saved to a global array. Ranges are saved in centimeters.

4. Obstacle Avoidance Costate

This costate is active only if the operator has not taken manual control of the

robot. It tests the sonar range data in the global array above using the checkSonarRanges

function. IR range data, in the form of floating point values of the reported analog

 87

voltages, are also checked using the irCloseContact function. If the sonar function

detects an object within the CLOSERANGE limit, equal to 40 cm, and it is within the

azimuths in the robot’s direction of travel, it sets the global variable closeContact, which

triggers obstacle avoidance. If the IR function returns a value indicating an obstacle

along the 300º azimuth, obstacle avoidance will also be triggered. Obstacle avoidance is

a rudimentary random walk. The Creature slows, stops, and then rotates in place for a

random period using the doRandSpin function. If the obstacle was detected with sonars,

then sonar ranges are checked for objects on either side of the 300º azimuth. Similarly, if

the obstacle was detected with IR sensors, the program assumes the sonar was not able to

detect the original obstacle, and IR ranges are used to test the 300º azimuth for obstacles.

If the 300º azimuth is clear, the robot moves away in that direction. Otherwise it remains

in the obstacle avoidance loop and executes another rotation in place.

If no close contacts are detected, the Obstacle Avoidance Costate tests the sonar

data for the presence of obstacles ahead of it at ranges less than the MIDRANGE value,

which is set to 90 cm. If there are objects ahead, the Creature is slowed, but not stopped.

The costate resets the velocity to the default autonomous speed if no sonar contacts ahead

of the robot are detected inside the MIDRANGE limit.

5. IR Ranging and Wheel Tachometer Costates

The CPU samples the analog IR ranger voltages with a function call to getIRVolts

within the IR Ranging Costate. The CPU conducts I2C communications with the PIC

serving as the wheel tachometer to read in the observed wheel speeds using the wheel

function. The function uses I2C library functions to request the value, in Hz, of each of

the three wheel speeds. The observed wheel speeds are stored to global variables in

radians per second. Based on the wheel speeds reported by the tachometers, the CPU

calculates the direction and magnitude of the robot’s velocity vector in the robot frame of

reference. It also finds the amount of chassis rotation, Ω, and sets the global newDR flag

to indicate the presence of new data upon which to dead reckon the robot position.

 88

6. Dead Reckoning (DR) and NavigationCostates

The odometry data, in the form of wheel speeds, must be converted into the frame

of reference of the plane that the robot is operating on. This Earth frame of reference is

assumed to be a stationary plane, and the DR Costate calls the calcVeloEarthFrame to

convert the robot velocity vector from the robot frame to the Earth frame using the

magnetic heading to relate the two frames of reference. The function called dr (short for

dead reckon) estimates the robot’s Cartesian position in centimeters from the Origin,

which is set to the location of the robot when the waypoint data was transmitted. It

assumes straight-line motion between each update using the velocity calculated in the

Earth frame. The Navigation costate is responsible for periodically recalculating the

navigation solution, the command heading, required for the robot to drive from its DR

position in the Earth frame to the next waypoint. It uses a flat Earth approximation and

solves the arctangent to determine the direction needed to drive to the waypoint.

7. Position Formatting Costate

This costate simply calls a function, makeFakeGPSpos that operates on the

Cartesian DR position to produce a latitude and longitude. It creates a string resembling

a GPS NMEA sentence.

8. IMU and Heading Hold Costates

The program’s IMU Costate tests for the presence of serial data on the RS232 port

connected to the IMU. If the test does not fail to indicate the presence of data, the costate

tests if the data indicates the start flag of an IMU data sentence. It uses the waitfor

function to allow program execution to continue briefly while allowing the IMU to send

its complete sentence before reading in the acceleration and rotation rate data with the

getImu function. The Heading Hold Costate operates if the global holdHeading flag is

set and the robot is not stopped. The costate applies proportional and derivative control

feedback to maintain heading. The costate delays operation again until the receipt of new

IMU data.

 89

9. Manual Control Costate

This costate allows the operator to remotely control the robot. If manual control

data packets are present, the global flag, manual_control_flag is set. This overrides

autonomous operation in various costates. The costate calls the manual_control function,

which parses the manual control string received from the GUI and sets the desired

direction of motion and magnitude of the velocity vector. The function calls the vector

function to generate the desired motion.

10. Stuck Vehicle Watchdog Costate

A low-priority costate is used at the end of the main loop to test for a condition

that indicates the robot is stuck. It tests for a condition where the robot is sending the

motors non-zero speed signals, i.e., it is attempting to move, but the three observed wheel

speeds, from the tachometer, are nearly zero. The tachometer allows the costate to

provide a simple feedback mechanism for detecting gross speed errors. If the condition is

detected and it persists for a period equal to TIMELIM, equal to four seconds, the robot

initiates action to attempt to free itself.

 90

THIS PAGE INTENTIONALLY LEFT BLANK

 91

VII. PULSE WIDTH MODULATION (PWM) CIRCUIT

A. EXPERIMENTAL DESIGN

Experimental observations were made to determine the linearity of the PWM

circuit’s response to the analog speed signal by measuring the voltage supplied to each

motor. The circuit was designed to produce a 100% duty cycle PWM signal at 4.1V.

This voltage corresponds to the maximum analog voltage that the BL2000 single board

computer can supply. To facilitate the test instrumentation the robot needed to remain

stationary during the test, so the robot was placed on wooden blocks that prevented its

wheels from contacting the ground. As a result all the observations of the associated

motor voltages, PWM duty cycles, and shaft speeds reflect a no load condition.

A Fluke multimeter was connected to measure each of the three motor controller’s

output voltage. Each multimeter’s ground reference was connected to the motor

controller’s terminal labeled M1, and the positive lead to the M2 terminal. Another

multimeter was used to measure the DC analog speed signal supplied to the PWM circuit

board. The DC power supply’s ground reference was connected to the electronics power

supply ground. The installed electronics battery aboard the robot was used to provide

electrical power to the CPU, and I2C devices via the five-volt bus.

The two motor batteries were connected in series and their series voltage was

applied to the motor power bus. A mulitmeter was used to record the voltage potential

between the motor bus’ unregulated voltage test point on the distribution/test panel and

the motor ground test point on the same panel. This measurement was done with the

analog speed signal set to zero at the beginning and end of the sequentially increasing test

described below.

Analog input DC voltages were applied beginning at 0.0 V and were sequentially

stepped up in 0.2 V increments starting at 1.0 V. The analog speed signal was connected

in parallel to the three motor speed input pins on the PCB. Thus, the circuit received the

same analog voltage input for all three motors, and the motors were operated

simultaneously. The robot does not utilize the motor controller’s brake, so the circuit on

 92

the PCB holds this signal low, and the direction signal was allowed to remain low. The

motor controller output voltage applied to each of the three motors was recorded for each

analog input voltage. Extra measurements were taken near the upper limit of 4.1 V.

After the data were recorded for the 4.1 V input voltage, the input voltage was reset to

zero, and the motor battery voltage observed as described above.

The motor controller output voltage test described previously included added

variability since it depended on the response of the LMD18200 H-Bridge chip, the

resistor, and capacitors that were installed on each motor controller. The PWM

waveform results from the intersection of the PWM circuit’s sawtooth signal and the

analog speed signal. In turn, the PWM signal is interpreted by the motor controllers,

which regulate the motor voltage applied to the motors. Thus, the PWM signal was not

anticipated to depend on the motor battery voltage, and this voltage was not measured in

this experiment. A follow-on experiment was conducted to measure the PWM circuit’s

response independent of the motor controller. This experiment consisted of applying an

analog speed signal to the PCB’s input and observing the PWM waveforms and their duty

cycles that were produced by the PWM circuit.

The PWM output signals were disconnected from the motor controllers’ inputs.

A Tektronix TDS3034 oscilloscope was used to measure the duty cycle of the three

PWM signals. The scope probes were connected to the PWM printed circuit board

(PCB) speed signal output pins and grounded to the motor battery ground test point at the

distribution/test panel. The Tektronix oscilloscope’s built-in percentage high duty cycle

measurement was used. A multimeter was used to measure the analog input speed signal

as in the above test.

As above, the analog speed input signal was connected in parallel to the three

PWM PCB input pins. The same analog DC voltage was applied to the PCB’s three

speed inputs starting at 0.0 V. Beginning at 1.2 V the input was sequentially stepped up

in 0.1 V increments to 4.1 V. For each analog input speed signal, the percent high duty

cycle measured by the Tektronix oscilloscope was recorded.

 93

B. PWM CIRCUIT EXPERIMENTAL OBSERVATIONS AND ANALYSIS

Data gathered in the experiments were interpreted using MATLAB. Since the

motor batteries’ voltage will decay during operation, the voltages applied to the motors

were normalized to allow more meaningful interpretation. The starting and ending motor

battery voltages were averaged. Figure 38 below shows the ratio of the DC motor

voltage output to the average motor bus voltage as a function of analog speed signal

applied to the PWM circuit.

Figure 38. DC Motor Voltage output as a Function of Analog Input Voltage.

 94

Below 1.2 V the DC motor voltage was observed to be zero. The data below 1.2

V were omitted to facilitate a linear fit. A first degree fit of the normalized DC motor

voltage yielded the following relation to the analog speed signal. Vout is the measured

output voltage, and Vavg battery is the average battery voltage, i.e., the maximum value

attainable. Vspeed is the independent variable, the analog speed signal applied. Of note,

the motor voltages observed from the number one motor controller were consistently 0.07

to 0.06 V higher than those observed from numbers two and three.

 ()
.

0.330 0.379out
speed

avg battery

V V
V

= −

Oscilloscope data are interpreted below. Figure 39 shows the duty cycle of the

PWM waveforms as a function of the analog speed signal. The figure includes data

below 1.2 V, and one can see the duty cycle goes to zero in this region.

Figure 39. PWM Duty Cycle as a Function of Analog Input Voltage.

 95

The PWM duty cycle data showed that the number three signal was consistently

0.4 to 0.6% higher than the numbers one and two signals. Figure 40 illustrates that the

standard deviation of the three duty cycles were acceptably small but increased with

increasing analog input voltage. Considering the observation above, there is no evidence

that the PWM signals were responsible for the increased output voltage of the number

one motor controller relative to the other two. Rather, the researcher suspects the number

three motor controller produced the discrepancy.

Figure 40. Duty Cycle Variation with Increasing Analog Input Voltage.

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

VIII. SONAR SENSOR HEAD

Because of the robot’s holonomic motion, such motion could result in a collision

with an obstacle while translating in any direction. To prevent this, a sensor was

developed that could provide coverage of all azimuths around the robot. Additionally,

complete azimuthal coverage was necessary to implement Virtual Force Field (VFF) or

Vector Field Histogram (VFH) obstacle avoidance methods used by Borenstein [42, 43].

Ultrasonic sonar was chosen because it was inexpensive, tolerant to timing errors,

accurate in range, and proven over decades of robotic research.

Complete azimuthal coverage is inversely related to the beamwidth; wider beam

patterns provide coverage using fewer transducers or fewer sonar ranging attempts.

Wider beamwidths, however, produce imprecise azimuthal detections. Narrower

beamwidths, conversely, require more sonar ranging attempts. Increasing the number of

ranging attempts slows the update rate of the sensor system but provides more fine-

grained azimuthal information on detected objects. The electrostatic Polaroid transducer,

with its nominal 15º beamwidth, was chosen for the Creature. When paired with the

Senscomp ranging module, it provides a simple digital sonar solution and offers a good

compromise of directionality and coverage.

In the past, robots such as CARMEL have addressed the problem of complete

azimuthal coverage with a fixed installation of 16 to 18 sonars distributed at regular

angular intervals about the periphery of the robot [42]. This solution was simple and

required no moving parts, but its cost, complexity of installation, weight, etc were not

optimal. The Creature’s rotating sonar sensor head combined the desirable aspects of the

Polaroid transducer’s beam pattern, but did so with four orthogonally mounted

transducers. In place of 16 fixed devices, the sensor head achieves complete coverage by

mechanically scanning the sonar transducers in azimuth. The sensor head consists of an

RC servo motor, a square perf board mounting plate, and four transducers.

 98

A. SONAR RANGING PATTERN

Figure 41 shows the scan pattern of the sensor head relative to the robot’s X,Y

reference frame. Sonar number one is oriented 60º from the robot’s Y axis when at

position three. Note, times reflect the position of the sonar detector head after it has

reached the position but before firing the sonars. The times are based on optimized

delays when operated with the final, adjusted version of the microcontroller’s code.

The 360º surrounding the robot were divided evenly into twenty, 18º sectors by

positioning the servo sequentially to five azimuths and ranging the four orthogonally-

mounted sonar transducers once at each position. After ranging the sonars at one position

the servo was moved counter clockwise and the process repeated. After the four sonars

were fired at position number five, the servo moves clockwise to position number one

and the cycle begins again.

Figure 41. Sonar Sensor Head Scanning Sequence.

 99

The RC servomotor was controlled by the sonar sensor head controller, which

contains a PIC16F690 microcontroller. In all experiments, the PIC assembly code

delayed 33 µs while listening for the return echo plus 20 µs to eliminate mutipath

detections between each ranging attempt. The delay between sonar firings included an

additional 80 µs when moving the servo motor. The expected time to complete ranging

20 sectors was 1460 µs. The sonar sensor head controller was responsible for the

following actions:

• generating the servo positioning signal

• triggering the sonar firings

• finding the TOF of the pulses

• storing the TOF data

• downconverting the 16-bit TOF data to integer, one byte format

• communicating the one byte data via RS-232 to the robot’s CPU

B. SONAR SENSOR HEAD EXPERIMENTAL DESIGN

A number of experiments were conducted to measure the performance of the

sonar detector head. The experiments described below were designed to find the

following characteristics:

• operation of the four transducers

• coefficient to convert the sensor’s one byte data to centimeters

• range resolution

• minimum detectable range

• maximum detectable range

• angular resolution of the servo scanning mechanism

• cycle time required to range all sectors

The Polaroid transducer’s acoustic beam pattern had been studied and well

documented. No effort was made to duplicate this work; rather observations were made

of the PIC microcontroller’s output data and the mechanical operation of the sensor head

with the servo motor operating.

 100

All of the experiments described below were conducted in the Naval Postgraduate

School’s acoustic anechoic room. The room is designed for acoustic frequencies below

the 49 kHz ultrasonic frequency of the Polaroid transducer. It was immediately observed

that the room’s walls reflected sufficient acoustic energy to register as valid echoes even

in the absence of the test targets. No objects, aside from test targets, were allowed within

two meters of the center of the robot. Walls were 2.2 to 3.5 m from the sonar

transducers. Test targets were Ø 0.5 inch solid steel rods, roughly 2 feet long. The

targets were positioned vertically. The air temperature during the experiments was 20.5

ºC.

During the experiments the robot remained stationary, and an AC to DC power

supply was used to supply DC voltage to the electronics power bus in place of the

electronics battery. The first-generation five-volt bus was energized to power the sonar

sensor head controller. The five-volt bus’ servo switch was energized when needed for

experiments that required scanning the sonar transducers in azimuth. Stationary sonar

sensor head observations were done by leaving the servo un-powered. The motor power

bus remained off, and motors were not operated. The robot’s BL2600 CPU and I2C bus

power remained off.

In place of the CPU, a laptop computer with an RS-232 serial port was connected

via serial cable to the serial port on the sonar sensor head controller PCB. The

Hyperterminal application bundled with the laptop’s Windows OS was used to observe

the serial data transmissions. The researcher observed the ASCII characters transmitted

from the PIC microcontroller and then translated them into deicmal integer values to

interpret the TOF.

The data were one-byte values; hence one would expect valid data over the range

zero to 255. The PIC, though, is programmed to send the hexadecimal value 0x02 for

any received echo with integer TOF value greater than 250. This allows it to use the

ASCII characters from 251 to 255 as control flags. For example, ASCII 254 and ASCII

251 indicate the start and stop, respectively, of its data word. Sonar blanking of the

 101

transmitted pulse governs the minimum detection range, which, in turn, limits the

expected minimum one-byte value. The minimum one-byte value was expected to be

approximately 19.

The first observation made was a control with the sensor head in a static condition

and no targets present. No objects were observed within two meters of the robot. The

sonar sensor head’s TOF data byte was recorded.

Next an experiment was conducted to verify the operation of the four transducers

and to determine the linear coefficient needed to convert the one-byte TOF value to a

range in centimeters. The test was static, the servo left unpowered. A target was placed

at 100 cm distance in the center of each transducer’s beam pattern, and the sonar sensor

head controller’s output was observed. After observing the reported TOF data byte, the

distances to the four targets were verified. Two targets required small distance

adjustments, as they were not precisely placed. The targets were adjusted and the TOF

range bytes were recorded.

A brief test was done to determine range resolution. Following the operational

test above, two targets were moved to 98 cm, while two were left in their original

positions as controls. The range data bytes were recorded for the four targets.

A minimum range experiment was conducted to determine the coefficient

described above and the minimum detectable range. The four targets were removed and

the sensor head was reoriented manually before the minimum range test was done. With

the sensor head stationary, a target was placed in the center of one of the transducer’s

beam patterns at 50 cm. The distance was decreased to 30 cm, 24 cm, and then 20 cm

and the TOF data were recorded at each distance. At 20 cm the target’s tripod legs

contacted the robot’s wheel and prevented placement closer than 20 cm.

A maximum range test was done in much the same manner as the minimum range

test. The first experiment was attempted with a target at two meters and within about 30

cm of the corner of the room, but the proximity of the room’s corner to the target

prompted the researcher to abort the test and place the target in the center of the anechoic

room. Beginning at 2.0 m, a target was placed in the center of the same transducer used

 102

for the minimum range test. At each distance, the range data byte was recorded. The

target was repositioned to 2.2 m, 2.3 m, and 2.4 m. At the completion of the maximum

range test, the target was removed, and the range byte recorded with no target present.

Two experiments were conducted to assess the mechanical scanning of the sensor

head. Unlike previous experiments, the sensor head was allowed to move to the five

positions described above by powering the RC servomotor. In the first, targets were

placed in the centers of three adjacent sonar ranging sectors, at 100 cm range. Measuring

from the robot’s Y axis, which coincides with the number one motor shaft, a target was

placed at 24º, 42º, and 60º. These positions correspond to the predicted centers of three

sectors, or azimuth “bins.” After observing the reported range data three times, the center

target at 42º was removed and the range data were recorded another three times. The test

was repeated with three targets placed -30º, -12º, and 6º relative to the robot’s Y axis at

100 cm.

The last azimuth scanning experiment consisted of placing one target at 1 m range

and varying its azimuthal position to determine which sector would register the contact.

The target was initially placed at -30º relative to the Y axis. Because the sonar’s beam

pattern is approximately 15º, moving the target 7.5º off the centerline of the sector was

expected to produce no contact. The target was repositioned to -37º, -39º, and then to

-43º relative to the Y axis while maintaining range constant at 1m. The range data were

recorded for each sector in the vicinity of that expected to register the target’s presence.

Analysis of the sector edge experiment prompted the researcher to conduct it a second

time. In the second experiment, the target was initially placed at 1 m along the -30º

azimuth. It was moved counter clockwise to -39º, -43º, and -47º positions. Then it was

placed at -23º and moved to -12º and 0º.

A simple experiment was conducted to verify the time required for the scanning

detector head to complete a cycle of 20 sonar-ranging measurements. The time for the

sensor head to return to its initial position was measured and averaged.

 103

C. SONAR SENSOR HEAD EXPERIMENTAL OBSERVATIONS

The stationary control yielded surprising results. The acoustic anechoic room was

expected to offer a pristine environment in which only echoes from the test targets would

be detected by the Senscomp sonar modules. During the control, however, the sonar

sensor head controller reported the one-byte decimal values 174, 173, 185, and 198.

These likely corresponded to echoes detected from the room’s walls.

The 1-meter static test with four targets followed. Three sonars reported 95, and

one sonar reported 94. The range to the number one target, the target closest to the Y

axis, was measured at 101.5 cm, and it was repositioned to 100 cm. The test was

repeated with three sonars reporting 94 and one reporting 95. The range to the number

four sonar target was re-measured at 100.5 cm. After repositioning this target to 100 cm,

the reported ranges were 94 for all sonars. This reported range data was constant for the

duration of the observation, approximately 30 s.

Targets number one and four were moved to 98 cm. The observed range data

bytes were 93 for targets one and four, and 94 for targets two and three. Observed range

resolution in this test was 2 cm. Expected resolution is limited by the process in the

assembly code that downconverts the sonar TOF using the PIC’s sixteen bit count of its

TIMER1 oscillator to an eight-bit value. Operating at 8 MHz, the PIC’s TIMER1

oscillator has a period of 0.5 µs. The downconverting process discards the most

significant bit, 215, and the least significant bits 20 through 26. The product of 27 and

0.5 µs, the oscillator’s period, yields a 64.0 µs period for the 27 bit, which one can

multiply times the speed of sound in air to obtain 2.17 cm per 27 period. The product of

TOF and speed of sound must be halved to give range, which yields 1.09 cm per 27

period. The least significant bit (LSB) reported by the PIC is the 27 bit, so the LSB

transmitted via RS-232 in the output data represents roughly 1 cm range.

 104

Observed range data bytes agreed with the expected results. The table below

summarizes the observations from the tests above and the minimum range test. In the

minimum range test, valid ranges were reported to the design limit of 20 cm, which

roughly corresponds to an object in contact with the perimeter of the robot’s circular

chassis. The reported range data byte did not vary during any of the observation periods.

Target Range Data byte reported by microcontroller
20 cm 2110
24 cm 2510
30 cm 3010
50 cm 4810
98 cm 9310
100 cm 9410

Table 4. Reported Range Byte Value vs. Measured Range.

The ratio of target range in centimeters to the one-byte range value is proportional

to range. If one desired to optimize the sonar detector for precision at a particular range,

one could select the ratio corresponding to that operating distance. Additionally, this

coefficient will vary with the speed of sound in air; thus it is inversely proportional to the

air temperature. This researcher has averaged the values from 100 cm to 50 cm to

provide the operating program the needed coefficient to convert the reported data byte to

centimeters.

Measuring the range to the targets in the maximum range test was less precise

than above, so it is not recommended that one include the data in determining the

multiplicative constant. The observed data at 2.0 m and 2.2 m were 185 and 198,

respectively. Multiplying by the coefficient derived as described above gives 196 cm and

210 cm. The observed data byte with the target at 2.3 m and 2.4 m varied around 209 and

210 and was indistinguishable from the control with the target removed. It is likely the

sonar transducer was detecting returns from the wire mesh floor of the room.

Multiplying the nominal height of the sonar transducer, roughly 25 cm, times the tangent

of the half-angle beam width, 7.5º, indicates one might expect the sonar to detect the

 105

floor at about 1.9 m. While in the anechoic room, the robot was placed on a 2x4 wood

block. The sonar transducers were roughly 3 cm higher than if the robot had been placed

on its wheels atop a flat surface, and repeating the calculation predicts a possible echo

from the ground at 2.1 m, which agrees loosely with the observations.

The results of the azimuthal scan tests agreed with expectations. The test, which

involved placing a target in the center of three adjacent sectors, was conducted twice.

Figure 42 shows the graph of observed range as a function of the sector number. The X

axis is the numbered sector, which ranges from zero to nineteen. Sector zero corresponds

to the eighteen-degree sector whose center is aligned with an angle six degrees from the

robot’s Y axis. Each sequential sector is centered eighteen degrees to the right, or in the

clockwise direction as viewed from above the center of the robot. In the lower portion of

Figure 42, the two graphs include sectors on both sides of the robot’s Y axis, so the

notation -1 has been used for the nineteenth sector and -2 for the eighteenth.

The average of the observed range byte values is plotted for the five sectors. The

center three sectors indicated targets at the expected range. In the first column, one can

see the three targets and the background walls in the sectors on the edges. The right

column shows range as a function of sector with the center target removed. The resulting

graph shows two contacts at ranges approximately 1m, but the now-empty sector shows

the background range to the room’s wall.

 106

Figure 42. Detection of Targets in Three Adjacent Sectors.

Another azimuth scanning experiment was conducted to test how the sonar sensor

head controller reported targets on the fringes of adjacent sectors. A single target was

placed at -30º from the robot’s Y axis at 1m. It was expected that this position would

coincide with the center of the eighteenth sector. At -30º the target was registered by the

sonar detector controller and reported in the eighteenth sector as expected. Moving

counter clockwise to -37º, seven degrees off the axis of the sector, had no effect on the

range data byte. At -39º, the target was also reported in the eighteenth sector. At -43º the

target was reported in both the seventeenth and eighteenth sectors. Thus, although the

3dB down point on the transducer’s beam pattern produces a nominal 15º beam width,

the sound intensity returned from the target to the Senscomp ranging module by the

transducer’s side-lobes exceeds the minimum needed to register as a valid contact. The

effect is an overlap between sectors for this combination of target and range.

 107

The experiment was repeated and expanded to include attempts to find the limit of

the sector on the edge closest to the Y axis. At -30º the target was reported in the

eighteenth sector, as expected, and at -43º targets were reported in the seventeenth and

eighteenth sectors. At -47º the target was reported in the seventeenth sector. Moving the

target clockwise from -47º to -23º generated contacts in the eighteenth and nineteenth

sectors. At -12º, the target was reported in the nineteenth sector only. When the target

was placed along the Y axis, the reported contact corresponded to the background wall.

Effectively, the target was undetected when placed at 0º.

Based on the observations of the behavior with respect to targets near the Y axis,

it was concluded that the PIC’s assembly code was providing an insufficient time delay,

80 µs, for the servo to move the 72º from its final position to the initial position before

the sonar was fired.

The time to complete a full 360º scan was measured. The observed time, 1.7 s,

agreed with the expected 1460 µs. The PIC’s code was edited to remove the 20 µs delay

for multipath avoidance between sonar firings. This could allow unwanted multipath

detection, but the 33 µs listening period was deemed long enough to mitigate this. The

servo delay between positions five and one was increased to 160 µs from 80 µs. Other

servo delays were set to 60 µs. An abbreviated experiment conducted in the autonomous

vehicle lab revealed a target placed on the Y axis was detectable with the modified

delays.

Figure 43 shows the results of one complete scan conducted inside the Physics

Department’s ground floor hallway. Ranges are raw, one byte values reported and have

not been converted to centimeters. The robot was stationary and placed midway between

each wall with its Y axis normal to the walls. The long-axis of the hallway was oriented

along the X axis. The linear features of the walls are easily visible. Note, the sonar

sensor controller reports non-contact with the value 250, so one can see that no contacts

were detected along the positive X axis.

 108

Figure 43. Sonar Azimuth Scan Showing Linear Features of Hallway.

 109

IX. FUTURE WORK

Although the present robot’s configuration represents many months of work,

much work remains to be done to complete a prototype that addresses the original

mission to detect FOD and remove it from the robot’s operating environment. Some of

the outstanding challenges represent tractable, albeit difficult, problems that exceeded the

researcher’s ability and knowledge as well as the time constraints associated with the

project. Areas of future research can be broadly grouped into five areas: FOD detection,

FOD removal, operating program improvements, GUI/human interface, and navigation.

A. FOD DETECTION

An autonomous robot represents a complex device, but developing a sensor

capable of detecting small targets of a variety of materials from plastic to non-ferrous

metals, in an environment with poor illumination presents future researchers with a

serious challenge. A variety of methods were considered in the conceptual design phase

of the Creature’s development. Ultrasonic sensors were briefly considered, but it was

believed their wavelengths would be too long. Ultimately, it was determined that visual

wavelengths would likely be best for common FOD targets, such as washers, rivets,

safety wire, etc. with characteristic dimensions on the order of a millimeter.

A conceptual sensor system was devised based on visual flow technology

available with MATLAB’s Simulink. An example Simulink Video and Image Processing

Blockset demonstration is presently available that detects moving objects, automobiles,

against a fixed background, consisting of a highway viewed from a stationary camera

mounted on an overpass above the roadway [44]. In the conceptual system for the

Creature, a fixed camera on the robot would stare at a swath of the surface along the

direction of the robot’s travel. The fixed camera’s video could be linked wirelessly to an

operator’s laptop or workstation running the computationally intensive video image

processing blockset in Simulink. The expected operating environment’s surface would

consist largely of steel decks covered by gray non-skid coating, so a color filter might be

applied to the video stream from the fixed camera to filter out the background deck and

 110

render objects on top of the surface more distinguishable. An optical flow Simulink

block in the blockset might be applied to the filtered image to detect the objects as their

apparent motion causes them to move through the camera’s field of view, much like the

automobiles move against the fixed background in the example above.

B. FOD REMOVAL

As a prototype, the Creature was intended to be a proof-of-concept device. The

robot was intended to explore holonomic motion, navigation, and obstacle detection and

avoidance. No effort was made to include a payload in the robot. Rather, it was expected

that the Creature could demonstrate the feasibility of autonomous FOD detection. A

follow-on robot could be built with smaller commercially-made devices, shrinking the

size of many of the required components and freeing up space and weight for a payload.

An engineering research area in the future might be design of a payload capable of

removing FOD after it is detected. Vacuum and brush techniques might be explored as

well as a method for holding the recovered FOD. Because vacuums and brush motors

will almost certainly contain at least one high-current motor, efficient use of available

battery power should be emphasized. Research must be done on integrating such a

payload, with its high-current device, into the robot’s electrical power supply busses.

C. OPERATING PROGRAM IMPROVEMENTS

There are two aspects of the robot operating program that require additional work.

First, the current robot operating program is brittle with respect to peripheral device I/O.

Second, the Creature has only rudimentary obstacle avoidance algorithms, and it lacks

path planning.

Little provision has been made to detect if sensors are operating correctly, or if

they are installed and receiving power. Portions of the Dynamic C code assume the serial

communications will occur, and if they do not, the code can become indefinitely stuck

awaiting the expected communication. The functions responsible for RS232

communications between the BL2600 and the sonars and between the BL2600 and the

IMU need a form of watchdog time out. For example, if the expected communication

with the sonar sensor head controller is not completed within roughly 60 ms, then the

 111

function might return a value to the main function to indicate a failure. The costate

responsible for communicating with the sonars should be modified to note the failure and

modify its execution. If a sufficient number of consecutive failures due to lack of receipt

within the allowed listening time occur, then the robot operating program might be

modified to assume a sonar fault exists, stop wasting CPU cycles attempting to conduct

communications that are likely to fail, and implement an IR-only obstacle avoidance

behavior. Communications with I2C devices use the I2C library functions, and these

have been configured in the library to limit the number of retries to prevent the CPU from

spending excessively large numbers of processor cycles attempting to communicate with

devices that are not responding. Regardless, a diagnostic costate might be added to check

for the proper functioning of all peripheral devices on the I2C bus as well as proper

operation of devices communicating via RS232.

Obstacle avoidance and path planning should be improved. The researcher was

only able to develop a random walk behavior in the time available. Research was done

into potential field algorithms, particularly Borenstein’s virtual force field (VFF) and

vector field histogram (VFH), for implementation into the robot operating program as an

underlying obstacle avoidance algorithm to combine ultrasonic sonar and IR sensor range

data. Borenstein’s work using ultrasonic sensors identical to those on the Creature

allowed motion at up to 0.78 m/s while successfully avoiding obstacles [42, 43]. A large

portion of the work to implement VFF was done, but not completed or tested. Dynamic

C code was written to map the sonar range and azimuth data to a Cartesian frame of

reference with its origin at the center of the robot, and functions were written to update

the Cartesian representation of the sonar data for straight-line relative motion between the

objects and the robot. No code exists yet to handle rotational transformations required

when the robot rotates with respect to the Earth frame of reference. Also, a function

would need to be written to sum the repulsive forces and target’s attractive force to

produce the resultant force on the robot.

 112

Without adequate orientation data about the robot’s pose, the existing code cannot

accurately determine the position of the robot from wheel odometry. This problem

relates to the separate navigation problem below. Thus, without accurate orientation,

navigation accuracy is poor, and as a result, path planning is moot. The researcher

believed it was pointless to attempt to navigate from an erroneous position to a waypoint

position, so path planning was stricken from the robot operating program. A random

walk was implementated, instead. If navigation can be improved in the future, path

planning should be re-introduced into the operating program code to extend the

Creature’s ability to conduct other tasks. Future research could simulate the motion of an

omnidirectional robot using a random walk to search an area. Simulations could compare

area covered by random motion to area covered using a planned search. Future research

could determine if random searches for FOD are sufficient to solve the problem of

detection and removal. If so, cost savings could be realized, and a simplier follow-on

robot constructed.

D. GUI/HUMAN INTERFACE

The Java language GUI provides a useful means to monitor and control the

Creature, but its background as a front-end for control of robots in an outdoor

environment has hobbled it when the researcher modified it for use indoors with the

Creature. Fundamentally, the GUI expects the robot to use GPS for absolute positioning.

Clearly this is a bad assumption when dealing with robots operating indoors, inside the

interior of a ship, underground, or in any other environment where GPS is unavailable. A

work-around was to take the Creature’s dead reckoned position, which was stored as a

Cartesian position from the origin, a known starting point in the Earth frame, and

periodically convert the orthogonal East and North distances from the known point into a

latitude and longitude. The GUI could be modified in the future to accept either

latitude/longitude or Cartesian position information.

Manual control of the Creature with the existing GUI is adequate, but slow

compared to the robot’s capabilities. Specifically, the ability of the operator to interpret

the robot’s pose and send the correct driving commands limits the speed at which the

 113

robot can move through its environment. As a holonomic platform, the Creature has no

front or rear. The lack of such arbitrary directions means an operator controlling the

Creature has many choices when trying to move the robot. Additionally, the robot

provides poor visual cues as to its orientation when viewed at distances exceeding three

to four meters. A valuable area of future work would be the creation of an improved user

interface, complete with joystick controller, to vector the robot and a jog-shuttle to

command robot chassis rotation. Additionally, future researchers might implement an

improved display, possibly a three-dimensional one fixed to the Earth reference frame, to

allow the operator to easily interpret the robot’s pose and quickly apply the desired

driving commands.

E. NAVIGATION

The problem of determining robot position without GPS was difficult to solve.

Previous SMART program robots have assumed GPS would be available and depended

on it for the primary source of position information. In an environment without GPS,

researchers are left with traditional methods such as dead reckoning, e.g., from wheel

odometry, and beacon methods. A vibrant and exciting area of research could be the

implementation of a newer navigation method based on robotic vision. The researcher

believes the computational load to derive robot motion from a video stream would vastly

exceed the limits of the BL2600’s processor, so a remote camera method such as the one

demonstrated by Shimada et al. might be employed [45]. In this position correction

method, a fixed remote overhead camera observes a scene in which the robot operates.

From the video image’s pixel data, a remote computer running a vision algorithm

determines the robot’s position and orientation. The position is communicated to the

robot periodically. Between updates, the robot uses dead reckoning techniques to

maintain its position.

 114

THIS PAGE INTENTIONALLY LEFT BLANK

 115

APPENDIX A – PULSE WIDTH MODULATOR AND
OPTICALISOLATION CIRCUIT

Figures 44 and 45 show the schematic of the PWM and optical isolation circuit

that was constructed to send analog speed signals from the BL2600 SBC to the motor

controllers. The Jumper J1 was included to allow the user to choose one half of the 12.0

V power via the voltage divider to set the thresholds of the Schmitt trigger.

Alternatively, one could use an external precision voltage reference connected to VCC if

the user desired greater accuracy.

 116

Figure 44. PWM Schematic Page 1.

 117

Figure 45. PWM Schematic Page 2.

 118

THIS PAGE INTENTIONALLY LEFT BLANK

 119

APPENDIX B – ELECTRICAL WIRING COLOR CODES AND
LABELS

A wiring color code was implemented using the code described in the table

below. Orange Alfa wire, in 16 AWG, was used for main power supply wiring. It was

not available in multiple colors, so extensive efforts were made to label wires for ease of

maintenance. The robot’s electrical wires were numbered to assist researchers in

maintaining and troubleshooting electrical connections. The numbering scheme was

implemented early in the development of the Creature, before many of the devices were

conceived, let alone installed. Because of this, the numbering is not sequential. The

numbering scheme left many numbers unused allowing them to be assigned to devices as

they were installed. Some effort was made to logically group numbers by function.

Five-volt electronics bus supplies were assigned alphabetical labels as a mnemonic to aid

in identifying their function.

Table 5. Wire Color Codes.

Wire Function Color
Ground Black
5 V supply Red
12 V supply Yellow
Unregulated Nominal 16V supply Yellow
Digital Communication (example I2C) Purple
Digital Signal Blue
Analog Signal (example motor speed) White

 120

Label Function
1 IR #1 analog range voltage
2 IR #2 analog range voltage
3 IR #3 analog range voltage
4 IR #4 analog range voltage
5 IR #5 analog range voltage
6 IR #6 analog range voltage
23 Motor 1 +24 V
24 Motor 1 0V
30 Motor 2 0V
31 Motor 2 +24V
40 I2C SDA
41 I2C SCL
50 Motor 3 0V
51 Motor 3 +24V
58 Motor Bus Ground
59 Motor Bus 24V Unregulated
60 Motor Bus Ground
61 Motor Bus 5V Regulated
62 Unregulated Input to 7812
63 7812 12V Regulator Output
64 Electronics Bus Ground
65 Electronics Bus 12V Regulated
66 Unregulated 16V Electronics
B RabbitLink Supply 16 V Unreg.
C I2C Compass 5.0 V Regulated
D BL2600 +K external pullup voltage
I IMU 5.0 V Regulated
R Router 5.1 V Regulated
S Sonar 5.1 V Regulated
V Sonar Servo 5.1V Regulated
W I2C Wheel Tach 5.0 V Regulated
X IR Sensors 5.0 V Regulated

Table 6. Electrical Wiring Function to Label Cross-reference.

 121

APPENDIX C – CREATURE OPERATING MANUAL

The complex and unique nature of the Creature’s electrical power supply

prompted the researcher to write a short user’s manual for the robot. The purpose of the

manual is to allow future researchers to continue further research into operating program

code enhancements, navigation, and obstacle avoidance without having to spend time

tracing wires and deciphering the functions of various switches and fuses. Familiarity

with the java GUI, pioneered by Uzun and running on the operator’s laptop, is assumed.

Operating the Creature involves two start-up sequences: the vehicle and the laptop

GUI. Before starting up, though, please ensure the Creature’s batteries have been

charged. See the Motor Battery Charging and Electronics Battery Charging Procedures

for details. Following the start up sequence given in Figures 46 through 49 will help

ensure sensitive electronic devices are not subjected to voltage transients.

 122

Figure 46. Creature Operating Manual Page 1.

 123

Figure 47. Creature Operating Manual Page 2.

 124

Figure 48. Creature Operating Manual Page 3.

 125

Figure 49. Creature Operating Manual Page 4.

 126

THIS PAGE INTENTIONALLY LEFT BLANK

 127

APPENDIX D – WHEEL TACHOMETER ASSEMBLY LANGUAGE
CODE

The PIC assembly language code below, specifically the ISR and I2C

communications code and subroutines, has been used with the permission of the code’s

original author to implement the tachometer functionality of the device installed in the

Creature [38].

; pic3Wheel20NOV.asm
; By Kirk Volland
; 11/20/2007
; based on I2C ISR code written by
; by Michael Gasperi
; used with the author's permission
; 6/11/2007 fixed per 16f690 errata on I2C port

; times for 250 ms and checks for changes (transitions hi to lo or lo to hi)
; on three digital input pins. Counts transistions, multiplies by 2.
; When receives i2c read it writes the count to i2c bus.

#include <p16f690.inc> ; Change to device that you are using.
#define NODE_ADDR 0xD0 ; I2C address of this node 64 decimal

#define WHL1OLD wheelTachLast,5
#define WHL2OLD wheelTachLast,4
#define WHL3OLD wheelTachLastB,7

#define WHL1 wheelTachNow,5
#define WHL2 wheelTachNow,4
#define WHL3 wheelTachNowB,7

;---
; Variable declarations
;---
 cblock 0x20
WREGsave
STATUSsave
FSRsave
PCLATHsave
Temp ; used to decode ISR
RegSel ; RegSelect
DataRegs:7
invalidWheelDat
startValues
wheelTachNow
wheelTachNowB
wheelTachLastB
wheelTachLast
wheel_1_cnt
wheel_2_cnt
wheel_3_cnt
i
 endc

 128

 org 0
 goto Startup ; 0x0001
 org 004
 goto ISR ; 0x0004

;---
; Main Code
;---

Startup
 ; set up oscillator freq
 bsf STATUS,RP0 ; Register Bank 1
 bcf STATUS,RP1 ; Register Bank 1
 movlw b'01110001' ; 8 MHz internal oscillator
 movwf OSCCON

 bcf STATUS,RP0
 bcf STATUS,RP1
 clrf PORTC
 banksel TRISC
 movlw 0xFF ; C all input
 movwf TRISC ; config port C
 movlw 0xFF ; all input
 movwf TRISA ; config port A
 movlw 0x00 ; A2D off
 banksel ADCON1
 movwf ADCON1
 movlw 0x00 ; all port a digital
 banksel ANSEL
 clrf ANSEL
 movlw 0x00 ; select channel 1 on A2D
 banksel ADCON0 ; A2D off
 movwf ADCON0

 banksel PCON ; power control
 bsf PCON,NOT_POR
 bsf PCON,NOT_BOR
 banksel PORTB
 clrf PORTB ; Clear port B
 banksel PIR1
 clrf PIR1 ; Clear Interupts
 banksel TRISB
 movlw 0xff
 movwf TRISB ; Port B all input
 banksel ANSEL
 clrf ANSELH ; Port B all digital
 ; set up TIMER1
 bcf STATUS,RP0
 bcf STATUS,RP1 ; Bank 0
 clrf T1CON ; reset it
 clrf TMR1H ; clear the 2 bytes of counters
 clrf TMR1L
 movlw b'00110000' ; prescaler 1:8 for long timing 250 ms
 movwf T1CON ; Use internal clock source. Keep TIMER1 off

 bcf T1CON,0 ; TIMER1 disable
 clrf PIR1 ; clear TMR1 overflow flag
 clrf TMR1H ; and Timer1 hi and lo count bytes
 clrf TMR1L
 movlw 0x0B

 129

 movwf TMR1H ; load TIMR1 with value = 3036
 movlw 0xDC ; so count up from 3036 to 65535
 movwf TMR1L
 bsf T1CON,0 ; enable TIMER1 and start counting up

 banksel SSPCON
 movlw 0x39 ; setup ssp module workaround sequence
 movwf SSPCON ;
 movlw 0x36 ; Setup SSP module for 7-bit
 movwf SSPCON ; address, slave mode
 movlw NODE_ADDR ; set Node Address
 banksel SSPADD
 movwf SSPADD
 banksel SSPSTAT
 clrf SSPSTAT ; clear SSP status
 banksel PIE1 ; Enable interrupts
 bsf PIE1,SSPIE
 bsf PIE1,TMR1IE ; Enable timer1 interrupt
 bsf INTCON,PEIE ; Enable all peripheral interrupts
 bsf INTCON,GIE ; Enable global interrupts

Do250msLoop

 bcf STATUS,RP0
 bcf STATUS,RP1
 clrf wheelTachNow ; clear the variable for holding PORTC results
 clrf wheelTachNowB
 movf PORTC,w ; put the current tachsignal from POTRC into
 ; WREG
 movwf wheelTachNow ; make a copy of current values in case it
 ; changes in next few cycles
 movf PORTB,w
 movwf wheelTachNowB
Test1
 btfsc WHL1
 goto WhlTach1Set ; do this if current wheel 1 tach signal is LO
 btfss WHL1OLD ; was the last wheel 1 tach signal LO?
 goto Test2 ; if both are LO, then no change, go to wheel 2 test
 incf wheel_1_cnt,f ; increment if new == 0 and old == 1
 goto Test2
WhlTach1Set
 btfsc WHL1OLD ; current tach is HI. Was last tach HI, too?
 goto Test2 ; if current == 1 and old == 1, then no change, go
 ; to Test3
 incf wheel_1_cnt,f ; new not equal to old, so increment the count
Test2
 btfsc WHL2
 goto WhlTach2Set ; do this if current wheel 1 tach signal is LO
 btfss WHL2OLD ; was the last wheel 1 tach signal LO?
 goto Test3 ; if both are LO, then no change, go to wheel 3 test
 incf wheel_2_cnt,f ; increment if new == 0 and old == 1
 goto Test3
WhlTach2Set
 btfsc WHL2OLD ; current tach is HI. Was last tach HI, too?
 goto Test3 ; if current == 1 and old == 1, then no change, go to
 ; end. copy values to old
 incf wheel_2_cnt,f ; new not equal to old, so increment the count
Test3
 btfsc WHL3
 goto WhlTach3Set ; do this if current wheel 1 tach signal is LO
 btfss WHL3OLD ; was the last wheel 1 tach signal LO?

 130

 goto CopyVals ; if both are LO, then no change, go to copy values
 incf wheel_3_cnt,f ; increment if new == 0 and old == 1
 goto CopyVals
WhlTach3Set
 btfsc WHL3OLD ; current tach is HI. Was last tach HI, too?
 goto CopyVals ; if current == 1 and old == 1, then no change, go
 ; to end of loop, copy values
 incf wheel_3_cnt,f ; new not equal to old, so increment the count

CopyVals
 movf wheelTachNow, w ; end of loop
 movwf wheelTachLast ; save current values as old values before
 ; restart loop
 movf wheelTachNowB,w
 movwf wheelTachLastB
 movlw 0x0B ; count down from 27 to zero
 movwf i ; delay the check loop for about 40 usec before checking
 decfsz i,f ; again to allow for signal rise times.
 goto $-1

 clrwdt
 goto Do250msLoop ; Do it again

;---
; Generic Interrupt Service Routine
;---
ISR
 movwf WREGsave ; Save WREG
 movf STATUS,W ; Get STATUS register
 banksel STATUSsave ; Switch banks, if needed.
 movwf STATUSsave ; Save the STATUS register
 movf PCLATH,W ;
 movwf PCLATHsave ; Save PCLATH
 movf FSR,W ;
 movwf FSRsave ; Save FSR
 banksel PIR1
 btfsc PIR1,SSPIF ; Is this a SSP interrupt?
 goto HandleSSP
 btfss PIR1,TMR1IF ; Is it a Timer 1 overflow?
 goto $; No, just trap here.
 bcf PIR1,TMR1IF ; clear interrupt for 250ms loop in timer1
 movlw 0x0B
 movwf TMR1H ; reload TIMR1 with value = 3036
 movlw 0xDC ; so count up from 3036 to 65535
 movwf TMR1L
 bcf STATUS,C ; since timing for 1/4 second and counting
 ; every half cycle
 rlf wheel_1_cnt,w ; multiply wheel count by 4 and divide by to
 ; 2 to get number cycles /1 sec
 movwf DataRegs+1
 clrf wheel_1_cnt ; zero the current count for wheel 1
 bcf STATUS,C ; since timing for 1/4 second and counting
 ; every half cycle
 rlf wheel_2_cnt,w ; multiply wheel count by 4 and divide by 2
 ; to get number cycles /1 sec

 movwf DataRegs+2
 clrf wheel_2_cnt ; zero the current count for wheel 2
 bcf STATUS,C ; since timing for 1/4 second and counting
 ; half cycle every

 131

 rlf wheel_3_cnt,w ; multiply wheel count by 4 and divide by 2
 ; to get number cycles /1 sec

 movwf DataRegs+3
 clrf wheel_3_cnt ; zero the current count for wheel 3
 movf PORTC,w
 movwf wheelTachLast ; seed the old value
 movf PORTB,w
 movwf wheelTachLastB ; seed the old value
 goto RestoreFromISR
HandleSSP
 bcf PIR1,SSPIF
 call SSP_Handler ; Yes, service SSP interrupt.
RestoreFromISR
 banksel FSRsave
 movf FSRsave,W
 movwf FSR ; Restore FSR
 movf PCLATHsave,W
 movwf PCLATH ; Restore PCLATH
 movf STATUSsave,W
 movwf STATUS ; Restore STATUS
 swapf WREGsave,F
 swapf WREGsave,W ; Restore WREG
 retfie ; Return from interrupt.

SSP_Handler
 banksel SSPSTAT
 movf SSPSTAT,W ; Get the value of SSPSTAT
 andlw b'00101101' ; Mask out unimportant bits in SSPSTAT.
 banksel Temp ; Put masked value in Temp
 movwf Temp ; for comparision checking.

State1: ; Write operation, last byte was an
 movlw b'00001001' ; address, buffer is full.
 xorwf Temp,W ;
 btfss STATUS,Z ; Are we in State1?
 goto State2 ; No, check for next state.....
 banksel SSPBUF
 movf SSPBUF,W ; Get the node addr and throw it away
 movlw 0x00 ; initalize register select to 0
 ; so first write will go into itself
 movwf RegSel
 return

State2: ; Write operation, last byte was data,
 movlw b'00101001' ; buffer is full.
 xorwf Temp,W
 btfss STATUS,Z ; Are we in State2?
 goto State3 ; No, check for next state.....
 banksel SSPBUF
 movf SSPBUF,W ; Get the byte into W
 banksel DataRegs
 movwf DataRegs ; save the byte to 0th array location

 return

State3: ; First Read operation, last byte was an
 movlw b'00001100' ; address, buffer is empty.
 xorwf Temp,W
 btfss STATUS,Z ; Are we in State3?
 goto State4 ; No, check for next state.....
 bcf STATUS,Z

 132

 ; case switch is the value of DataRegs == 3
 movf DataRegs,w
 xorlw 3
 btfss STATUS,Z
 goto NotEq3
 ; DataRegs = 3 so send out 4th array element
 movf DataRegs+3,w ; save to WREG for output
 goto State3Send
NotEq3 ; if DataRegs != 3 is it 2?
 xorlw 2^3
 btfss STATUS, Z
 goto NotEq2
 ; DataRegs = 2 so send out 3th array element
 movf DataRegs+2,w ; save to WREG for output
 goto State3Send
NotEq2 ; default if not == 2 or 3, then DataRegs == 1
 movf DataRegs+1,w ; save array element 2 to WREG

State3Send
 call WriteI2C ; Write the byte to SSPBUF
 return

State4: ; Other reads operation, last byte was data,
 movlw b'00101100' ; buffer is empty.
 xorwf Temp,W
 btfss STATUS,Z ; Are we in State4?
 goto State5 ; No, check for next state....
 banksel RegSel
 movlw 0xA
 call WriteI2C ; Write the byte to SSPBUF
 return

State5:
 movlw b'00101000' ; A NACK was received when transmitting
 xorwf Temp,W ; data back from the master. Slave logic
 btfss STATUS,Z ; is reset in this case. R_W = 0, D_A = 1
 goto I2CErr ; and BF = 0
 return ; If we aren’t in State5, then something is wrong.

I2CErr
 nop
 goto $; let watch dog catch this
 return

;---
; WriteI2C
;---
WriteI2C
 banksel SSPSTAT
 btfsc SSPSTAT,BF ; Is the buffer full?
 goto WriteI2C ; Yes, keep waiting.
 banksel SSPCON ; No, continue.
DoI2CWrite
 bcf SSPCON,WCOL ; Clear the WCOL flag.
 movwf SSPBUF ; Write the byte in WREG
 btfsc SSPCON,WCOL ; Was there a write collision?
 goto DoI2CWrite
 bsf SSPCON,CKP ; Release the clock.
 return
 end ; End of file

 133

APPENDIX E – SONAR SENSOR HEAD CONTROLLER
ASSEMBLY LANGUAGE CODE

;***
; sonarServoHead11.asm
;
; version 11 from sonarServoHead10.asm
; Change History:
; version 11 adjusts time delay between sonar numbers 1 and 4
; to start motors moving then do delay for false echoes.
; ver7b added longer delay when moving to position 5 to give servo
; Time to move the longer distance. Delays 160 ms.
; Changed delay when moving between sectors to 80 ms from 60 ms.
; ver7a
; Coverted back to one byte data format per range reading.
; Added one byte at end of range sentence to indicate which element in
; array is the newest (i.e. time late = 0). Other time lates can be
; figured from that one.
; Added test of 16 bit count. If MSB is set, then range > max. reportable.
; Also, if downconverted byte > 250, then sets value to 0x02 for no contact.
; Fine tuned the sonar firings, waits 40 ms between each sonar firing
; at a given position.
; Changed to 4 sonars and 5 servo positions.
; Moves sonar head to 5 positions.
; Generates 20 sonar range values
;
;
; Kirk Volland
; 19 OCT 2007
;***
; Hardware: PIC16F690 running at 8MHz
; Sonar 1 INIT output on RA2
; Sonar 2 INIT output on RB6
; Sonar 3 INIT output on RA5
; Sonar 4 INIT output on RB4
; Blanking Inhibit BINH output on RA4
; Combined OR'ed ECHO line input on RC5
; Servo control output on RC0
;
;***
; TIMER0 prescaler set to 1:16 so one 'tick' is 8 usec
; use TIMER0 for the servo pulse widths
; TIMER1 prescaler set 1:1 so one 'tick' is .5 usec
;***
#define ECHOPIN PORTC,5
#define PULSEONDELAY 0xB2

#include <p16F690.inc>
 __config (_INTRC_OSC_NOCLKOUT & _WDT_OFF & _PWRTE_OFF &
 _MCLRE_OFF & _CP_OFF & _BOR_OFF & _IESO_OFF & _FCMEN_OFF)

; variables
 cblock 0x20
i
j
pulseCount
SonarRange:2
SonarRanges:20

 134

PulseCount
Position
SonarNum
tempVal
ArrIndex
 endc
; macros
servoHiMac macro
 movlw 0x01
 movwf PORTC
 endm

servoLoMac macro
 nop
 nop
 nop
 nop
 movlw 0x0
 movf PORTC,f
 nop
 nop
 nop
 endm

PingSonar4Mac macro
 movlw b'00010000'
 movwf PORTB
 endm
PingSonar3Mac macro
 movlw b'00100000'
 movwf PORTA
 endm
PingSonar2Mac macro
 movlw b'01000000'
 movwf PORTB
 endm
PingSonar1Mac macro
 movlw b'00000100'
 movwf PORTA
 endm

 org 0
 nop

;**************************** Initialization **************************
Init
 ; set up oscillator freq
 bsf STATUS,RP0 ; Register Bank 1
 bcf STATUS,RP1 ; Register Bank 1
 movlw b'01110001' ; 8 MHz internal oscillator
 movwf OSCCON

 bcf STATUS,RP0
 bcf STATUS,RP1 ; Bank 0
 clrf CCP1CON ; clear capture compare module,
 ; turn it off
 clrf PORTA ; init portA
 clrf PORTB ; init portB
 clrf PORTC ; init PORTC
 ; make all input and outputs digital
 bsf STATUS,RP0 ; Register Page 2
 bsf STATUS,RP1 ; Register Page 2

 135

 clrf ANSEL ; all digital IO
 clrf ANSELH
 ; set up TIMER1
 bcf STATUS,RP0
 bcf STATUS,RP1 ; Bank 0
 clrf T1CON ; reset it
 clrf TMR1H ; clear the 2 bytes of counters
 clrf TMR1L
 movlw 0x0 ; prescaler 1:1 for Sonar Range timer
 movwf T1CON ; Use internal clock source. Keep TIMER1 off
 ; set up TIMER0
 bsf STATUS,RP0 ; Bank 1
 movlw b'00000011' ; Sourced from the Processor clock
 movwf OPTION_REG ; Bits 2,1,0 are 011, so prescaler 1:16 or
 ; 8 usec per bit for Servo Pulse HI time

 ; set up pins for Inputs and Outputs
 movlw b'00100000' ; All output except capture comparator ccp1
 movwf TRISC ; RC5 input (combined ECHO all others out
 clrf TRISB ; port B all output
 clrf TRISA ; port A all output

 ; intialize baud rate set up 57.14 kbit
 ; Fosc = 8MHz
 ; SYNC = 0, BRGH= 1, BRG16 = 1, SPBRG = .34
 movlw .34
 movwf SPBRG
 bsf BAUDCTL, BRG16 ; set BRG16 of BAUDCTL register
 bsf TXSTA ^0x80, BRGH ; BRGH set HI
 bcf TXSTA ^0x80, SYNC ; SYNC LO , enable serial port asych.
 bcf TXSTA ^0x80, TX9 ; 8bit data
 bsf TXSTA ^0x80, TXEN ; enable Transmiter

 bcf STATUS,RP0 ; back to Register Page 0
 bsf RCSTA, SPEN ; enable serial port
 bcf RCSTA, CREN ; continuous recv. disable
 bsf RCSTA, RX9 ; 9 bit parity
 movf RCREG, w ; read RECREG to clear any pending IRQ

;*************************** Begin Main Loop ************************
StartPosition
 movlw 0x05 ; load the starting position variable = 5
 movwf Position ; position 5 is 6 degrees from far R. limit
MoveServos ; test if servo is moving to position 5
 nop ; if yes, allow more time for servo to move
 bcf STATUS,Z ; the bigger distance before firing off sonar.
 movf Position,w ; Position to WREG
 xorlw 0x05 ; Is Position == 5 ?
 btfss STATUS,Z
 goto SetDelay3 ; if NOT, then skip to below
 movlw 0x09 ; want 9 * 20 ms delays = 180 ms
 goto SaveDelay ; for servo to move 72 degrees
SetDelay3
 movlw 0x03 ; Only moving 18 degrees. Three 20 ms delays
SaveDelay ; before any ranging attempt. 3* 20ms = 60 ms
 movwf PulseCount ; of 'dead' cycles with no sonar pinging

SendSignalsAndWait
 call SubSendServoPulse ; send out HI pulse on the servo control pin
 ; duration of HI pulse depends on Position
 call SubDEL20 ; do a 20 ms delay
 decfsz PulseCount,f ; Count down from 3 to zero, then begin

 136

 goto SendSignalsAndWait ; ranging with sonars, else do another
 ; 'dead' cycle with no sonar firing.

 ; Do ranging with each of 4 sonars, one at a time
 movlw 0x4 ; load counter with initial value = 4
 movwf SonarNum ; to keep track of which sonar is being
 ; pinged.
RangingAttempt
 nop
 call SubSendServoPulse ; must send out a pulse to the servo first
 nop ; then we have 20 to 30 ms to use for sonar
 ; ranging attempt before the servo needs
 ; another signal

 ; case switch logic to pick which sonar to send INIT pin HI out
 movf SonarNum,w
 xorlw 4
 btfss STATUS,Z
 goto NotSonar4
 PingSonar4Mac
 goto PingSent
NotSonar4
 xorlw 4^3
 btfss STATUS,Z
 goto NotSonar3
 PingSonar3Mac
 goto PingSent
NotSonar3
 xorlw 3^2
 btfss STATUS,Z
 goto NotSonar2
 PingSonar2Mac
 goto PingSent
NotSonar2
 PingSonar1Mac

PingSent
; set up Capture Compare to catch rising edge of echo
 clrf CCP1CON
 movlw b'00000101' ; capture the RISING edge of echo signal
 movwf CCP1CON ; when it's passed through XOR-gate

 bcf T1CON,0 ; TIMER1 disable
 clrf PIR1 ; clear TMR1 overflow flag
 clrf TMR1H ; and Timer1 capture flag
 clrf CCPR1H ; clear high and low bytes of counters
 clrf TMR1L ; clear the capture compare values, too
 clrf CCPR1L ; before next ranging
;************************ Ping, sent start timing **********************
 bsf T1CON,0 ; enable TIMER1

 ; delay 1ms for transducer to stop ringing
OneMsDelay
 movlw 0x04 ; do 4 delays
 movwf j
 movlw 0xA7 ; 167* 3 instructions/loop * 0.5 usec = 250 usec
 movwf i ; delay to allow for sonar transducer ring down
 decfsz i,f ; and allow time for the "crud" and "
 ; "glitches on the echo
 goto $-1 ; line to go away
 decfsz j,f
 goto $-5

 137

 ; send blanking inhibit to override the default 2.38 ms blanking
 movf SonarNum,w
 xorlw 3 ; is it blanking inhibit for sonar 3?
 btfss STATUS,Z
 goto NotBINHforSonar3
 movlw b'00110000' ; send this value out PORTA if it's sonar3
 movwf PORTA
 goto BINHsent
NotBINHforSonar3
 xorlw 3^1
 btfss STATUS,Z ; it's not sonar 3. Is it sonar1?
 goto NotBINHforSonar1
 movlw b'00010100' ; send BINH pin HI and keep the sonar INIT high
 movwf PORTA ; for sonar 3
 goto BINHsent
NotBINHforSonar1
 movlw b'00010000' ; Not sonars 1 or 3. Must be 2 or 4.
 movwf PORTA ; regardless, we're not pinging a sonar in PORTA
 ; so just sent the BINH pin in PORTA hi.
BINHsent
 nop ; done
 clrf PIR1 ; clear TMR1 overflow flag.
 ;MAKE SURE CAPTURE FLAG IS CLEAR
 ; AFTER THE BINH SIGNAL GETS SENT.

check_echo
 btfsc PIR1,2 ; check for capture of rising edge of echo
 goto check_done ; if capture flag is HI, then get out of loop
 btfss PIR1,0 ; check for over flow of TIMER1 count
 goto check_echo ; if overvlow flag not set, then go back up and do
 ; again
 goto ovr_flo ; TIMER1 must have overflowed

check_done
 bcf T1CON, TMR1ON ; stop TIMER1 counter
 movf CCPR1L,w ; copy the values of capture compare
 movwf SonarRange ; counters to vars. Keep 7 bits of high byte
 ; and MSB of LO byte.
 movf CCPR1H,w ; copy high byte of the couter to high byte of
 ; range variable
 movwf SonarRange+1
 btfsc SonarRange+1,7 ; test the MSB of HI byte. See if value will
 ; overflow
 ; 1 byte output.
 goto ovr_flo ; if set, then value is too big to represent it
 ; with 1 byte.
 rlf SonarRange,w ; shift 7th bit out of LSByte and into carry
 ; Flag C
 rlf SonarRange+1,f ; shift the carry flag value into bit 0 of
 ; MSByte and
 ; shift MSBit out of register to
 ; the carry Flag C
 ; i.e. throw out the 2^16th counter value.
 ; Keep 2^8 thru 2^15 bits.

 bsf T1CON, TMR1ON ; restart TIMER1 counter
 bcf PIR1,2 ; reset the capture compare flag
 btfss PIR1,0 ; continue timing to the end of normal
 goto $-1 ; listening period so that next servo
 ; pulse will be about 20 to 30 ms after
 ; RangingAttempt

 138

 goto done

ovr_flo
 movlw 0x02
 movwf SonarRange ; set equal to 2 for no contact
 movwf SonarRange +1 ; set equal to 0x02 for no contact flag

;********** *********** Done with Timing ***********************
done
 movf SonarRange+1,w ; do sanity check on the 1 byte range value
 sublw 0xFA ; subtract WREG(SonarRange)
 ; from literal 250, result to WREG
 btfsc STATUS,C ; test carry flag. Is SonarRange+1 byte > 250?
 goto saveValueToArr ; skip ahead and save value to array
 movlw 0x02 ; else...
 movwf SonarRange+1 ; if value 251 to 255, report as no
 ; contact
saveValueToArr
 ; store the range value in a unique spot in the array
 ; Put sonar reading in an array location depending on which
 ; sonar fired and which position it was pointed at.
 ; the 2^3 and 2^2 bits indicate the position
 ; the 2^1 and 2^0 bits indicate the sonar number (front,
 ; rear, L, R)
 ; array index = 4*(5 - Position) + (4 - SonarNum)
 movf Position,w ; load WREG with current Position
 sublw 5 ; find difference 5 - Position put into WREG
 movwf ArrIndex ; make a copy put into ArrIndex
 bcf STATUS,C ; carry value = 0
 rlf ArrIndex,f ; shift value to left. i.e. multiply by 2
 bcf STATUS,C ; carry value = 0
 rlf ArrIndex,f ; shift 0 into bit 0 and others over to the
 ; left. i.e. multipy by 2 again

 movf SonarNum,w ; load WREG with sonar number that was pinged
 sublw 4 ; find 4 - SonarNum and put result in WREG
 addwf ArrIndex,f ; sum WREG + ArrIndex = ArrIndex
 ; store high byte in SonarRanges array at ArrIndex location
 movf ArrIndex,w
 addlw SonarRanges
 movwf FSR ; Set FSR to the array index offset + SonarRanges
 ; file register location
 movf SonarRange+1,w ; want to save the High byte of SonarRange
 movwf INDF ; move WREG to the array position

 clrf PORTA ; send all INIT pins and the BINH pin low
 clrf PORTB

 nop

NextNum
 decfsz SonarNum,f ; Done with delay. Decrement through sonars 4
to 1
 goto RangingAttempt ; do a sonar ranging "ping" for next sonar.
 ; Same azimuth position.

 decfsz Position,f ; After all 4 sonars fired, decrement position.

 goto MoveServos ; Go back up to start of loop and move servos to
 ; new position.

 139

 ; if Position == 0, then we've fired off
 ; at positions 5,4,3,2,1. Need to reset to position to
 ; 5.
 movlw 0x05 ; Reset position to position 5, start position
 movwf Position
 goto StartPosition ; Repeat loop and have servo motor reset to
 ; the start position = far Right.

; ********************* Subroutines *******************************
; Subroutine to send the RC servo pulse to the Futaba 3003 servo
SubSendServoPulse
 clrf CCP1CON ; turn off the ccp1 module
 ; set up TIMER0
 bsf STATUS,RP0 ; Bank 1
 movlw b'00000011' ; Sourced from the Processor clock
 movwf OPTION_REG ; Bits 2,1,0 are 011, so prescaler 1:16 or
 ; 8 usec per bit for Servo Pulse HI time
 bcf STATUS,RP0 ; bank 0 again
 bcf STATUS,Z ; clear this in case it's set, want to check against
 ; it later
 bcf INTCON,T0IF ; clear the overflow flag and then...
 clrf TMR0 ; zero out TMR0 count
 ; case switch logic to find out which position
 movf Position,w ; use Position var. to determine duration of
 ; HI pulse to servos.
 ; Position in degrees from full Left =
 ;Case switch logic
 ; test == 5?
 xorlw 5
 btfss STATUS,Z
 goto NotPosit5
 servoHiMac ; pulse the Servo pin HI for 105 "ticks" of 8usec each
 movlw 0x97 ; count up from decimal 151 to 256
 movwf TMR0 ; to keep pulse HI for 840 usec for 54 degree posit
 btfss INTCON,T0IF
 goto $-1
 bcf INTCON,T0IF ; clear the overflow flag and then ...

 goto PulseDone

NotPosit5
 xorlw 5^4 ; test == 4?
 btfss STATUS,Z
 goto NotPosit4
 servo HiMac ; pulse the Servo pin HI count 127 ticks
 movlw 0x80 ; count up from 256 - 128.5 = 128 decimal
 movwf TMR0 ; to keep pulse HI for 1020 usec
 btfss INTCON,T0IF ; for 72 degree position
 goto $-1
 bcf INTCON,T0IF ; clear the overflow flag and then ...
 nop
 nop
 nop
 nop ; add a few nop cycles to get just about 1020 usec
 goto PulseDone

NotPosit4
 xorlw 4^3 ; test == 3?
 btfss STATUS,Z
 goto NotPosit3 ; skip below code if Position is NOT 3
 ; DO this code if Position == 3 center = 90 deg

 140

 ; from far R. limit
 servoHiMac ; pulse the Servo pin HI for 150 ticks
 movlw 0x6A ; count up from 256 - 150 = 106 to 256
 movwf TMR0 ; to keep pulse HI for 1200 usec
 btfss INTCON,T0IF
 goto $-1
 bcf INTCON,T0IF ; clear the overflow flag and then ...

 goto PulseDone

NotPosit3
 xorlw 3^2
 btfss STATUS,Z
 goto NotPosit2
 ; DO this code if Position == 2 == 18 degrees L of neutral
 ; or 108 degrees from far R. limit
 servoHiMac ; pulse the Servo pin HI for 172.5 ticks
 movlw 0x54 ; count up from 256 - 172.5 = 83.5 = 84
 movwf TMR0 ; to keep pulse HI for 1380 usec
 btfss INTCON,T0IF
 goto $-1
 bcf INTCON,T0IF ; clear the overflow flag and then...
 nop
 nop
 nop ; add a couple of nop cycles to add a bit more time to servohi

 goto PulseDone
NotPosit2 ; Must be Position == 1 == 126 degrees from Far R. limit
 servoHiMac ; pulse the Servo pin HI for 1560/8 = 195 ticks
 movlw 0x3D ; count up from from 256 - 195 = 61
 movwf TMR0 ; to keep pulse HI for 1560 usec
 btfss INTCON,T0IF
 goto $-1
 bcf INTCON,T0IF ; clear the overflow flag and then...
 nop
 nop
 nop
 nop
PulseDone
 servoLoMac ; set the servo to low again
 nop
 return

; delays for 20 ms using TIMER0. Sends Data via RS232.
; Note prescaler change to 1:256.
SubDEL20
 bsf STATUS,RP0 ; Bank 1
 movlw b'00000111' ; configure Timer0.
 movwf OPTION_REG ; Prescaler 1:256 so 1 tick = 128 usec
 bcf STATUS,RP0 ; Bank 0
 movlw 0x64 ; timer0 count from 100 to 256
 movwf TMR0 ; so count 156 ticks = 19.97 ms
 btfss INTCON,T0IF ; wait for overflow
 goto $-1
 bcf INTCON,T0IF
 bsf STATUS,RP0 ; Bank 1
 movlw b'00000011' ; Reconfigure TMR0 back to 1:16
 movwf OPTION_REG
 bcf STATUS,RP0 ; Bank 0
 ; send out the range data to serial

 141

 bcf PIR1,TXIF ; clear bit
 ; load WREG with literal value of 0xFE
 movlw 0xFE ; load WREG with flag to signal start of
 ; sonar sentence
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 bcf PIR1,TXIF ; clear bit

 ; repeat start flag
 movlw 0xFE ; load WREG with flag to signal start of
 ; sonar sentence
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 bcf PIR1,TXIF ; clear bit

; BEGIN data section of serial transmission
; Very Kludge. Could implement a counter and loop
; to access the array values.
; Data output begins with value that is closest to yaxis of robot
; and proceeds clockwise from 6degrees to 24, to 42, etc. to last
; value (array element 6) which is 348 degrees
 ; element 2
 movf SonarRanges+0x02,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 19
 movf SonarRanges+0x13,w ; load WREG with 1 byte
 movwf TXREG ;send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 15
 movf SonarRanges+0x0F,w ; load WREG with 1 byte
 movwf TXREG send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 11
 movf SonarRanges+0x0B,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop

 142

 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 7
 movf SonarRanges+0x07,w ; load WREG with 1 byte
 movwf TXREG ;send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 3
 movf SonarRanges+0x03,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 16
 movf SonarRanges+0x10,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit
 ; element 12
 movf SonarRanges+0x0C,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 8
 movf SonarRanges+0x08,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 4
 movf SonarRanges+0x04,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF

 143

 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 0
 movf SonarRanges,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 17
 movf SonarRanges+0x11,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 13
 movf SonarRanges+0x0D,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 9
 movf SonarRanges+0x09,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 5
 movf SonarRanges+0x05,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 1
 movf SonarRanges+0x01,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1

 144

 nop
 bcf PIR1,TXIF ; clear bit

 ; element 18
 movf SonarRanges+0x12,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 14
 movf SonarRanges+0x0E,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 10
 movf SonarRanges+0x0A,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; element 6
 movf SonarRanges+0x06,w ; load WREG with 1 byte
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit
 ; indicate which byte is newest
 ; i.e. time late = 0.
 movf ArrIndex,w ; load WREG with 1 byte
 movwf TXREG ; send the last byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 nop
 bcf PIR1,TXIF ; clear bit

 ; send end flag
 movlw 0xFB ; load WREG with flag to signal end of
 ; sonar sentence
 movwf TXREG ; send the sonar range byte out serial
 nop
 nop
 btfss PIR1,TXIF
 goto $-1
 bcf PIR1,TXIF ; clear bit

 145

 return

 end

 146

THIS PAGE INTENTIONALLY LEFT BLANK

 147

APPENDIX F - DYNAMIC C ROBOT OPERATING CODE

//
//creature6mod2.c
//15NOV2007
// Dynamic C 9.21 running on BL2600
// ver5 adds IMU support and heading hold from IMU
// ver6 turns on random sonar walk if contact within 40 cm
// added IR speed sensitive threshold
// added I2C wheel counter dr
// added magnetic variation correction. dr with respect to TRUE NORTH.

///
// Compiler settings for comms module test and for debugging with printf
///
//set MODULE_TEST to 1 when running as a separate module
//set MODULE_TEST to 0 when integrate with other files (using #use " ")
#define MODULE_TEST 0
//set DEBEGPRINT to 1 to enable all printf stdio for debugging
//set DEBUGPRINT to 0 to disable printf when robot not connected to laptop
#define DEBUGPRINT 0

//set DEBUGSONAR to 1 to enable ONLY printf stdio for debugging SONAR STUFF
//set DEBUGSONAR to 0 to disable printf
#define DEBUGSONAR 1
//set to enable printf statements to display wheel rotation sensors,
//dr data, etc
#define DEBUGDR 1

//
//Declarations, global variables
///
#class auto
void msDelay(unsigned int delay);
///
// 2. Communications Module Code
///
/* CommModule.c
 Charles Le, Zach Cole, and John Gamble

 This module enable the communication between the BL2000 and the remote
 control station (Java program) via UDP. There are total of 5 channels
 that UDP packets are sent to:
 4001 - MAN_CTRL_PORT packets (from Remote Control to BL2000)
 4002 - WYPNT_PORT - Way point packets (from Remote Control to BL2000)
 4003 - GPS_PORT - GPS data (from BL2000 to Remote Control)
 4004 - COMPASS_PORT - Compass data (BL2000 to Remote Control)
 4005 - ERROR_PORT - Error info (BL2000 to Remote Control)

/
/*
 * Pick the predefined TCP/IP configuration for this sample. See
 * LIB\TCPIP\TCP_CONFIG.LIB for instructions on how to set the
 * configuration.
 */
#define TCPCONFIG 1

/*

 148

 * Define the number of socket buffers that will be allocated for
 * UDP sockets. We need five UDP sockets, so five socket buffer
 * will be used for MAX_UDP_SOCKET_BUFFERS.
 * FUTURE WORK: should only use one udp port for communication.
 * Concatinate all informations to one packet, and detokenize when it arrives
 * destination.
 */
#define MAX_UDP_SOCKET_BUFFERS 5

//The following udp ports are set up to communicate with the ctrl station
#define MAN_CTRL_PORT 4001 //sent from Ctrl station (input port)
#define WYPNT_PORT 4002 //sent from Ctrl station (input port)
#define GPS_PORT 4003 //sent to Ctrl station (output port)
#define COMPASS_PORT 4004 //sent to Ctrl station (output port)
#define ERROR_PORT 4005 //sent to Ctrl station (output port)

//These are constants used in the Communication Module
#define UDP_BUFF_SIZE 256
#define TRUE 1
#define FALSE 0
#define PRESENT 1
#define NOT_PRESENT 0

//These constants specified the type of navigation data sent to the ctrl module
#define GPS_DATA 1
#define COMPASS_DATA 2
#define ERROR_DATA 3

/*
 * If this is set to "0", we will accept a connection from anybody.
 * The first person to connect to us will complete the socket with
 * their IP address and port number, and the local socket will be
 * limited to that host only.
 *
 * If it is set to all "255"s, we will receive all broadcast
 * packets instead.
 *
 * THIS ADDRESS NEED TO BE IN THE SAME SUBNET WITH THE LOCAL IP ADDRESS
 */
#define REMOTE_IP "192.168.4.37"
//#define REMOTE_IP "255.255.255.255" /*broadcast*/

/********************************
 * End of configuration section *
 ********************************/

#memmap xmem
#use "dcrtcp.lib"
#use "udp.lib"

//This data structure describe the data structure of the communication
//between the Communication Module and the Navigation Module
typedef struct CommChanStruct
{
 int DataPresentFlag;
 char Buff[UDP_BUFF_SIZE];
} CommChan;

int receive_packet(void);
int receive_packet_from_port(int);
int send_packet(int PortNumber, char*);
void ClearDataPresent(CommChan *);

 149

void SetDataPresent(CommChan *);
int CheckDataPresent(CommChan *);
void ClearChannelBuffer(CommChan *);
void InitUdpComm(void);
int SendToControlStation(int);
void SendGpsToControlStation(void);
void SendCompassToControlStation(void);
void SendErrorToControlStation(void);
void SendToCommModule(CommChan *, char *);
char* GetMessageFromCommModule(CommChan *);

//These are udp sockets that communicate with the ctrl station
static udp_Socket ManCtrlSock, WayPtSock, GpsSock, CompassSock, ErrorSock;

//These are the communication channels between the Communication Module
//and the Navigation Module
static CommChan ManCtrlChan, WayPtChan,GpsChan, CompassChan, ErrorChan;
char ErrString[200]; //for feedback to laptop control station

//
// 3. IMU
///

// serial buffer size
#define FINBUFSIZE 255
#define FOUTBUFSIZE 31
// serial baud rate
#define BAUD232 19200
#define IMUHEADLIMIT 0.0175
#define IMUROTLIMIT 0.010227
char imuChar;
char *xRot, *yRot, *zRot; // raw x, y, and z axis body rotation chars from IMU
int imuZeroPoint; //nominal 511 for zero rotation
float zRotation[7]; // zRot in float + or -
 // value in rad/s rotation rate
of chassis
long imuTimes[7]; //hold the times the IMU was recorded
float imuHeading;
int newImu; //boolean flag new IMU data avail
int getImu(void); // reads IMU sentence and parses for z axis rotation
rate

//
// 4. I2C Compass
///

#use "I2C.LIB"
//reads I2C compass sets global 1 byte integer heading
int compass(char addrsByte, char registerByte);

//PA6 SCL output, PA7 SDA output, PB0 SCL input PB2 SDA input
//Definition of Clock and Data Ports
// Enable Digital out DIO 00 and DIO 01 digital outputs (sinking only)
// Enable Digital DIO 2,03,04 outputs for motor direction signals
#define DIGOUTCONFIG 0x001F
int heading; // integer 1 to 255 value current observed mag heading
int headingLast; // last observed heading from compass
int newCompass; // boolean flag set when new compass data is available
 // from I2C compass
int cmdHeading; // heading commanded by CPU to maintain

 150

int holdHeading; // boolean TRUE if heading hold engaged
//MAGVAR Monterey 14 E as 1 byte value (14 deg * 255 bits/360 deg)
#define MAGVAR 9.91667
#define NORTH 255 // 1 byte value is 255 for 360 degrees
// limit of allowed hdg error 2 * 1.4 degrees = 2.8 degree slop
#define HEADINGSLOP 2
//Proportional coefficient for PID
#define KAPPA_P 12
//Derivative coeff. for PID heading control feedback
#define KAPPA_D 0.8
#define KAPPA_I 0

//
// 5. Waypoint
///
typedef struct
{
 double lat;
 double lon;
 char action;
}WP;

WP waypoints[13]; // 0th element is the Origin lat, long.
 // Then 1 to 12th elements
are waypoints
int current_wp_count; // a counter to keep track of waypoints

void getwaypoints(void); // gets waypoints from GUI calls initNav()
 // to initialize
nav
void makeWayPts(void); // fills in array of type Position

//
// 6. Navigation
///
#use "gps.lib"
// POSITACCURACY IN cm
#define POSITACCURACY 200

// uses flat Earth approximation around robot's current position
// Define polarity for robot, N hemisphere + and East hemisphere +
//e^2 = f*(2-f) where f = 1/298.257223563 for WGS84
const float esquared = .0066943800;
const float a = 6378.13700; //radius Earth in km for WGS84
//meridional radius of curvature and radius of curvature for prime vertical km
float R1, R2;
GPSPosition OriginPos; // position of the flat Earth ORIGIN
double initPos_lat, initPos_long; // lat, long in radians of the Origin
char fakeGPSsentence[64]; //holds a fake GGA sentence to pass to GUI
typedef struct{
 long cm_N;
 long cm_E;
} Position;
Position currentPos; // declare a var of type Position for current robot pos.
Position DRpos; // position based just on DR from wheel data
Position waypointsPos[13]; // array of Position type to hold x, y
 // loctations of
waypoints

void getOriginGPSfromGUI(void);
void initNav(void);

 151

void makeFakeGPSpos(void);
void navigation(int lastWaypt, int nextWaypt);

//
// 7. DR
///

int wheel1, wheel2, wheel3; // observed values from wheel counter
in Hz
 //
optical wheel sensor produces 50 Hz in 1 rev
 // or 50 Hz in 2*pi radians
float obsOmega1, obsOmega2, obsOmega3; // observed radians/s wheel speeds
float obsVx, obsVy; // observed robot velocity WRT robot's
y, x axis cm/s
float vE[3]; // velocities in Earth Frame in cm/s
float vN[3];
float obsChassisOmega; // obsv'd robot chassis rotational speed rad/s
float obsTheta; // obsv'd robot velocity vector direction
 // WRT robot's y axis

float obsV; // magnitude of robot's obsv'd velocity
vector
int newDR; // boolean flag set if newDR wheel
speed data avail
long DRtime; // time elapsed since last DR. Multipy
velocities
 // times the DRtime to get
position estimate
//reads 1 wheel speed from counter
int wheel(char addrsByte, char registerByte);
// calculates velocity vector from wheel speeds in rad/s
void calcVeloRobotFrame(float omega1, float omega2, float omega3);

//
// 8. Obstacle Avoidance (IRs)
///

float irRanges[6]; // 6 element array to hold the current IR voltage readings
float irRangesOld1[6]; // array for the IR data previous to current data
float irRangesOld2[6]; // array for IR data prior to Old1 (oldest data)
float irRangesAvg[6]; // average values of last two IR data sets
long watchDogTime; //time last OK motion. For detection stuck wheels
#define TIMELIM 4000
#define STUCKLIMIT 0.1
#define IRSTOP_RNG 1.6
#define IRCAPTURE_RNG 1.0
#define CRAWLSPEED .5
#define SLOWROTATESPEED 3
int irCloseContact(void); //tests irRanges[] for readings exceeding
IR_STOP_RNG

//
// 9. Sonar Sensor
///

//serial C port to PIC
#define SONARCONVERSION 1.05
#define CINBUFSIZE 127
#define COUTBUFSIZE 63
#define CLOSERANGE 40
#define MIDRANGE 90

 152

#define NOCONTACT 250
#define NUM_SONAR_AZIMUTHS 20 // 20 azimuths with 2 bytes per range reading
char input_char; // serial char input
int avoidObstacles; // boolean flag True of False to do obstacle avoidance
float sonarRanges[24]; // array to hold range data in cm for 20 azimuths
int newestSonar; //holds number of the newest sonar reporting range
int closeContact; // boolean flag sonar contact close
int objectAhead; // boolean flag obstacle ahead
int clutterdArea; // boolean flag for behavior
int getSonarRanges(void);
int checkSonarRanges(void);
long doRandSpin(void); // does random spin in place for 500 to 1500
ms
long spinDelay; // time in ms to delay while spinning in place

//
// 10. Motion
///

#define RADWHEEL 5.250 // radius in cm for motion in cm
#define RADCHASSIS 22 // radius from bot's center to wheel cm
#define FWD_DIR 0
#define REV_DIR 1
#define STOPVOLTS 0.00
#define MAXVOLTS 4.10
// max angular wheel speed
// approx 220Hz on tach (with 50 division/1 rev optical targets)
// or 27.6 radians /s
//#define MAXOMEGA 13.80 WRONG VALUE
#define MAXOMEGA 27.64
//analog speed signals output
#define mtr1Chan 0
#define mtr2Chan 1
#define mtr3Chan 2
// channels for digital direction signals
#define dir1Chan 2
#define dir2Chan 3
#define dir3Chan 4

// motion, hdg vars and function prototypes
int robotStopped; //boolean flag TRUE if wheel counters go to zero
int robotNotRotating; //boolean flag set TRUE if chassisOmega zero
float mtr1Spd; //motor 1 analog voltage speed signal 0 to 4.096 (from BL2000)
float mtr3Spd; // motor 2 analog speed signal
float mtr2Spd; // motor 3 analog speed signal
int dir1; // motor 1 direction.
 // boolean values 1 = reverse = REV_DIR, 0 =
FWD_DIR
int dir3; // motor 2 direction
int dir2; // motor 3 direction
float v; //robot's velocity vector magnitude, using scale 0 to 1.0
float cmdVelocity; // remember original velocity to maintain
float theta; // angle in degrees between Y axis (alligned with motor 1)
 // and vector
float chassisOmega; //body or chassis rotation angular velocity rad/s

// function prototypes
int stopMotors(void); // stops motors. calls setMotorVolts
int spinInPlace(void); // rotate in place
int getVeloVect(void); //gets user input
int solveMotorSpeeds(void); //solves three wheel speeds given v and theta
// converts a wheel angular speed in rad/s to analog volts needed to output

 153

float freqToVolts(float omegaIn);
// sets analog output values to pins
int setMotorVolts(float spd1, int dir1, float spd2, int dir2, float spd3,\
 int dir3);
int vector(void); //move robot in any direction calls setMotorVolts

//
// 11. Control
//
int manual_control_flag; // boolean flag indicates user has taken manual
control
void manual_control(void);

//
// Shared functions //
//

//
// Function: msDelay
// Programmer: Kirk Volland
// Input: desired time delay in ms
// Output: Nil
// Description: To delay the processor with the input time in ms, primarily
// for serial and I2C communications.
//
void msDelay(unsigned int delay)
{
 unsigned long done_time;

 done_time = MS_TIMER + delay;
 while((long) (MS_TIMER - done_time) < 0);
}

//
// END GLOBAL VARS DECLARATIONS, MACROS, AND FUNCTION PROTOTYPES
// BEGIN FUNCTION DEFINITIONS
//

///
//2. Communications
///
/

///
/
// Function: receive_packet
// Programmer: Charles Le
// Input: None
// Output: return 1 for a successful receive, and 0 if fail to send
// Description: This program will check for way point input and manual control
// input from the remote control station (Java Program)
///
/
int receive_packet(void)
{

 #GLOBAL_INIT
 {
 memset(ManCtrlChan.Buff, 0, sizeof(ManCtrlChan.Buff));
 memset(WayPtChan.Buff, 0, sizeof(WayPtChan.Buff));
 }

 154

 memset(ManCtrlChan.Buff, 0, sizeof(ManCtrlChan.Buff));
 memset(WayPtChan.Buff, 0, sizeof(WayPtChan.Buff));

 udp_recv(&WayPtSock, WayPtChan.Buff, sizeof(WayPtChan.Buff));
 #if DEBUGPRINT
 printf("\n WayPtSock-> %s\n",WayPtChan.Buff);
 #endif

 // receive the packet
 udp_recv(&ManCtrlSock, ManCtrlChan.Buff, sizeof(ManCtrlChan.Buff));

 #if DEBUGPRINT
 //printf("\n ManCtrlSock-> %s\n",ManCtrlChan.Buff);
 #endif

 tcp_tick(NULL);
 return 1;
}
///
/
// Function: receive_packet_from_port
// Programmer: Charles Le
// Input: None
// Output: return 1 for a successful receive, and 0 if fail to send
// Description: This program will receive udp packet from the specified port
///
/
int receive_packet_from_port(int PortNumber)
{
 int retval;

 #GLOBAL_INIT
 {
 memset(ManCtrlChan.Buff, 0, sizeof(ManCtrlChan.Buff));
 memset(WayPtChan.Buff, 0, sizeof(WayPtChan.Buff));
 }

 memset(ManCtrlChan.Buff, 0, sizeof(ManCtrlChan.Buff));
 memset(WayPtChan.Buff, 0, sizeof(WayPtChan.Buff));

 switch(PortNumber)
 {
 case WYPNT_PORT:
 {
 retval = udp_recv(&WayPtSock, WayPtChan.Buff, sizeof(WayPtChan.Buff));
 if (retval < 0) {
 sock_close(&WayPtSock);
 if(!udp_open(&WayPtSock, PortNumber, /*resolve(REMOTE_IP)*/ -1, \
 PortNumber, NULL))
 {
 exit(0);
 }
 }
 else
 {
 SetDataPresent(&WayPtChan);
 }
 tcp_tick(NULL);
 }
 case MAN_CTRL_PORT:
 {

 155

 retval = udp_recv(&ManCtrlSock, ManCtrlChan.Buff, \
 sizeof(ManCtrlChan.Buff));

 if (retval < 0) {
 sock_close(&ManCtrlSock);
 if(!udp_open(&ManCtrlSock, PortNumber, /*resolve(REMOTE_IP)*/ -1,
\
 PortNumber, NULL))
 {
 exit(0);
 }
 }
 else
 {
 SetDataPresent(&ManCtrlChan);
 }
 tcp_tick(NULL);
 }
 default:
 {
 //error incorrect port number
 return 0;
 }

 }
 tcp_tick(NULL);
 return 1;
}
///
/
// Function: send_packet
// Programmer: Charles Le
// Input: PortNumber, messageIn
// Output: Return 1 for a successful sending and 0 for fail to send
// Description: The function will send the input message to the input udp port
///
/
int send_packet(int PortNumber, char* messageIn)
{
 auto int length, retval;
 udp_Socket *sock;

 length = strlen(messageIn) + 1;

 switch(PortNumber)
 {
 case GPS_PORT:
 {
 retval = udp_send(&GpsSock, messageIn, length);
 if (retval < 0) {
 #if DEBUGPRINT
 printf("Error sending datagram! Closing and reopening
socket...\n");
 #endif
 sock_close(&GpsSock);
 if(!udp_open(&GpsSock, PortNumber, /*resolve(REMOTE_IP)*/ -1, \
 PortNumber, NULL))
 {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);

 156

 }
 }
 }
 case COMPASS_PORT:
 {
 retval = udp_send(&CompassSock, messageIn, length);
 if (retval < 0) {
 #if DEBUGPRINT
 printf("Error sending datagram! Closing and reopening socket...\n");
 #endif
 sock_close(&CompassSock);
 if(!udp_open(&CompassSock, PortNumber, /*resolve(REMOTE_IP)*/ -1,
\
 PortNumber, NULL))
 {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }
 }
 }
 case ERROR_PORT:
 {
 retval = udp_send(&ErrorSock, messageIn, length);
 if (retval < 0) {
 #if DEBUGPRINT
 printf("Error sending datagram! Closing and reopening socket...\n");
 #endif
 sock_close(&ErrorSock);
 if(!udp_open(&ErrorSock, PortNumber, /*resolve(REMOTE_IP)*/ -1,\
 PortNumber, NULL))
 {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }
 }
 }
 default:
 {
 //error incorrect port number
 return 0;
 }

 }
 tcp_tick(NULL);
 return 1;
}
///
/
// Function: ClearDataPresent
// Programmer: Charles Le
// Input: DataChannel
// Output: None
// Description: This function will set DataPresentFlag to 0
///
/

void ClearDataPresent(CommChan *Channel)
{

 157

 Channel->DataPresentFlag = FALSE;
}
///
/
// Function: SetDataPresent
// Programmer: Charles Le
// Input: DataChannel
// Output: None
// Description: This function will set DataPresentFlag to 1
///
/

void SetDataPresent(CommChan *Channel)
{
 Channel->DataPresentFlag = TRUE;
}
///
/
// Function: SendToCommModule
// Programmer: Charles Le
// Input: DataChannel
// Output: None
// Description: This function will set DataPresentFlag to 1
///
/
void SendToCommModule(CommChan *Channel, char *Message)
{
 SetDataPresent(Channel);
 strcpy(Channel->Buff,Message);
}
///
/
// Function: CheckDataPresent
// Programmer: Charles Le
// Input: DataChannel
// Output: None
// Description: This function will set return DataPresentFlag
///
/

int CheckDataPresent(CommChan *Channel)
{
 return Channel->DataPresentFlag;
}
///
/
// Function: ClearChannelBuffer
// Programmer: Charles Le
// Input: DataChannel
// Output: None
// Description: This function will clear channel buffer to 0
///
/

void ClearChannelBuffer(CommChan *Channel)
{
 memset(Channel->Buff, 0, sizeof(Channel->Buff));
}
///
/
// Function: InitUdpComm
// Programmer: Charles Le

 158

// Input: None
// Output: None
// Description: This function will initialize buffers and set upd port for
// communication between BL2000 to the remote control. These ports
will
// be set up: 4001, 4002, 4003, 4004, 4005
///
/
void InitUdpComm(void)
{
 sock_init();
 #if DEBUGPRINT
 printf("Opening UDP socket\n");
 #endif

 ClearDataPresent(&ManCtrlChan);
 ClearDataPresent(&WayPtChan);
 ClearDataPresent(&GpsChan);
 ClearDataPresent(&CompassChan);
 ClearDataPresent(&ErrorChan);

 ClearChannelBuffer(&ManCtrlChan);
 ClearChannelBuffer(&WayPtChan);
 ClearChannelBuffer(&GpsChan);
 ClearChannelBuffer(&CompassChan);
 ClearChannelBuffer(&ErrorChan);

 sock_mode(&ManCtrlSock, UDP_MODE_NOCHK);

 if(!udp_open(&ManCtrlSock, MAN_CTRL_PORT, /*resolve(REMOTE_IP)*/-1, \
 MAN_CTRL_PORT, NULL)) {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }

 sock_mode(&WayPtSock, UDP_MODE_NOCHK);
 if(!udp_open(&WayPtSock, WYPNT_PORT, /*resolve(REMOTE_IP)*/-1, \
 WYPNT_PORT, NULL)) {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }

 sock_mode(&GpsSock, UDP_MODE_NOCHK);
 if(!udp_open(&GpsSock, GPS_PORT, /*resolve(REMOTE_IP)*/-1, GPS_PORT, NULL))
{
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }

 sock_mode(&CompassSock, UDP_MODE_NOCHK);
 if(!udp_open(&CompassSock, COMPASS_PORT, /*resolve(REMOTE_IP)*/-1, \
 COMPASS_PORT, NULL)) {
 #if DEBUGPRINT
 printf("udp_open failed!\n");

 159

 #endif
 exit(0);
 }

 sock_mode(&ErrorSock, UDP_MODE_NOCHK);
 if(!udp_open(&ErrorSock, ERROR_PORT, /*resolve(REMOTE_IP)*/-1, \
 ERROR_PORT, NULL)) {
 #if DEBUGPRINT
 printf("udp_open failed!\n");
 #endif
 exit(0);
 }
} //end of function

///
/
// Function: GetMessageFromCommModule
// Programmer: Charles Le
// Input: CommChan
// Output: return the command from the Remote Controler and clear the present
// flag
// Description: This function will return the command from the Remote Controler
// and clear the present flag
///
/
char* GetMessageFromCommModule(CommChan *Channel)
{
 ClearDataPresent(Channel);
 return Channel->Buff;
}
///
/
// Function: SendGpsToControlStation
// Programmer: Charles Le
// Input: None
// Output: None
// Description: This function will send the Gps data to the ctrl station
///
/
void SendGpsToControlStation(void)
{
 tcp_tick(NULL);
 if (CheckDataPresent(&GpsChan))
 {
 send_packet(GPS_PORT,GpsChan.Buff);
 tcp_tick(NULL);
 ClearDataPresent(&GpsChan);
 }
}
///
/
// Function: SendCompassToControlStation
// Programmer: Charles Le
// Input: None
// Output: None
// Description: This function will send the compass data to the ctrl station
///
/
void SendCompassToControlStation(void)
{
 tcp_tick(NULL);
 if (CheckDataPresent(&CompassChan))

 160

 {
 send_packet(COMPASS_PORT,CompassChan.Buff);
 tcp_tick(NULL);
 ClearDataPresent(&CompassChan);
 }
}
///
/
// Function: SendErrorToControlStation
// Programmer: Charles Le
// Input: None
// Output: None
// Description: This function will send the error data to the ctrl station
///
/
void SendErrorToControlStation(void)
{
 tcp_tick(NULL);
 if (CheckDataPresent(&ErrorChan))
 {
 send_packet(ERROR_PORT,ErrorChan.Buff);
 tcp_tick(NULL);
 ClearDataPresent(&ErrorChan);
 }
}

//
//3. IMU
//

///
/
// Function: getImu
// Programmer: Kirk Volland
// Input: None
// Output: int 0 success, 1 failure
// Description: This function does RS232 communications with IMU. Reads in
// chars from serial port until the end of line carriage return detected.
// Parses string for rotation rates. Saves values to globals.
///
/
int getImu(void)
{
 int i;
 char imuStr[128];
 for(i = 6; i > 0; i--) //for averaging the rotation rate
 { //shift older data to end of array
 zRotation[i] = zRotation[i-1]; //array element 0 is the newest
 imuTimes[i] = imuTimes[i-1];
 }
 i = 0;
 strcpy(imuStr, ""); //null out any contents
 imuStr[i] = imuChar; //record the leading #
 i++;
 //get an IMU sentence of rotation values, and linear accelerations
 while((imuChar = serFgetc()) != -1 && imuChar != '\r')
 {
 //save chars to array if they are not -1 or the ending
 //rawImuLog[logIndex + i] = imuChar; //null it out
 imuStr[i] = imuChar;
 i++;
 if(i > 127)

 161

 i = 0; //reset i so less than max element value of array

 }

 //find the z-rotaion and use ASCII to float to store it's value
 //parse imuStr
 xRot = strtok(imuStr, ",");
 yRot = strtok(NULL, ",");
 zRot = strtok(NULL, ",");
 imuTimes[0] = MS_TIMER;
 if(zRot == NULL)
 {
 zRotation[0] = 999.9; //error non-value
 return 1;
 }
 else
 { //subtract 511 from value
 //conversion 300deg/1024 bits * (2* PI /360 degrees)
 //rotation rate defined positive for Counter clockwise body rotation
 //NOTE, nominal 511 value changed to 512 zero reference based on
 // observations of installed IMU when robot stopped. zRotation in rad/s
 zRotation[0] = (-1* rad((atof(zRot) - imuZeroPoint) * (float) 300/1024)
);
 return 0;
 }
}

//
//4. compass (I2C)
//

//
// Function: compass
// Programmer: Kirk Volland
// Input: char I2C address and char register to read
// Output: int mag. compass heading 1 to 255
// Description: This function communicates with the digital compass using I2C
// protocol and converts the readout from the compass into int newHeading.
// returns int value.
//
nodebug int compass(char addrsByte, char registerByte)
{
 char cmpd;
 int err;
 int newHeading, i2cTries;
 if (err = i2c_startw_tx())
 {
 i2c_stop_tx();
 return -10 + err; // Error. Return clock stretching too long
 }
 if (err=i2c_wr_wait(addrsByte))
 {
 i2c_stop_tx();
 return -20+err; // Return no ack on slave (retried)
 }
 if (err=i2c_write_char(registerByte))
 {
 i2c_stop_tx();
 return -30+err; // Return no ack on data register 01
 }
 if (err=i2c_startw_tx())
 {

 162

 i2c_stop_tx();
 return -40+err; // Return too long stretch on read
 }
 if (err=i2c_wr_wait(addrsByte +1))
 {
 i2c_stop_tx();
 return -50+err; // Send read to slave - no ack (retried) return -5
 }

 if(err=i2c_read_char(&cmpd))
 {
 i2c_stop_tx();
 return -60+err;
 }
 else
 {
 for (i2cTries = 0; i2cTries < 4; i2cTries ++)
 {
 if (err = i2c_send_ack())
 {
 // nothing. try again
 }
 else // no error. OK reception of ack from slave
 {
 i2c_stop_tx();
 headingLast = heading;
 heading = (int) (cmpd + MAGVAR);
 return 0; // normal exit
 }
 }
 i2c_stop_tx();
 headingLast = heading;
 heading = (int) (cmpd + MAGVAR);
 return -70 + err; // not recv'd ack from slave
 }
}

//
//5. Waypoint
//

//
// Function: getwaypoints
// Programmer: Alex, Kirk
// Input: Nil
// Output: Nil
// Description: This function put the sets of waypoints that was sent from
comms
// module into global data (array of structure for waypoints). NOTE, the GUI's
// polarity is Western hemisphere +. Code assumes N and W hemispheres.
// Add UPDATED CODE for others LATER.
// Obstacle avoidance has 3 waypoints (index 0,1,2) reserved for nav, but they
// are not used in the WINTER2007 avoidance code.
//
void getwaypoints(void)
{
 char* WayPtStr;
 char TempLat[20], TempLong[20], TempAction[5];
 int StartIndex;
 char DummyStr[100];
 char tempBuf[20];

 163

 StartIndex=0;
 strcpy(TempLat,"0.01"); //initialize templat to not 0.0
 memset(TempLat,0,sizeof(TempLat));
 memset(TempLong,0,sizeof(TempLong));
 memset(TempAction,0,sizeof(TempAction));
 WayPtStr=GetMessageFromCommModule(&WayPtChan);
 //WayPtStr=WayPtChan.Buff;
 #if DEBUGPRINT
 printf("WayPtStr=%s\n",WayPtStr);
 #endif

 WayPtStr=WayPtStr+1;
 for (StartIndex= 0; StartIndex<= 12; StartIndex++)
 {
 //Separate waypoint tokens
 if (StartIndex==0)
 strcpy(TempLat,strtok(WayPtStr," "));
 else
 strcpy(TempLat,strtok(NULL," "));

 strcpy(TempLong,strtok(NULL," "));
 strcpy(TempAction,strtok(NULL," "));

 //copy tokens to the WayPoint Structures
 // assume Northern Hemis. lat's
 waypoints[StartIndex].lat= (double) atof(TempLat);
 //assume Western Hemisphere long.
 waypoints[StartIndex].lon= (double) atof(TempLong);
 waypoints[StartIndex].action=TempAction[0];

 #if DEBUGPRINT
 printf("waypoints[%d].lat=%lf\n",StartIndex,waypoints[StartIndex].lat);
 printf("waypoints[%d].lon=%lf\n",StartIndex,waypoints[StartIndex].lon);
 printf("waypoints[%d].action=%c\n",StartIndex,waypoints[StartIndex].actio
n);
 #endif
 // send acknowledgement on Error channel back to laptop
 /*
 sprintf(tempBuf, "waypoint[%d] Lat:%f Long:%f\n", StartIndex,\
 waypoints[StartIndex].lat , waypoints[StartIndex].lon);
 strcat(ErrString, tempBuf);
 */
 }
}

//
// Function: makeWayPts
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Fills in array of type Position with the distances in cm North
// and East of the Origin.
//
void makeWayPts(void)
{
 int i;
 double tempLat, tempLong;

 for(i = 1; i < 13; i++)
 {

 164

 if(waypoints[i].lat != 0)
 {
 tempLat = waypoints[i].lat;
 // make radians for math in flat Earth
 tempLat = (double) rad(tempLat);
 tempLong = waypoints[i].lon;
 // make radians for math in flat Earth
 tempLong = (double) rad(tempLong);
 // record into array of structs using flat Earth approx's
global
 // R1 radius and R2 radius
 // multiply Radii in km by 1E5 to get radii in cm
 waypointsPos[i].cm_N = (long) R1 * 1E5* (tempLat -
initPos_lat);
 waypointsPos[i].cm_E = (long) R2 * 1E5* cos(initPos_lat) *
\
 (initPos_long- tempLong);
 #if DEBUGPRINT
 printf("tempLat %.8lf initPos_lat %.8lf\n", tempLat, initPos_lat);
 printf("tempLong %.8lf initPos_long %.8lf\n", tempLong, initPos_long);
 printf("waypointsPos[%d].cm_N =%ld\n", i,waypointsPos[i].cm_N);
 printf("waypointsPos[%d].cm_E =%ld\n",i,waypointsPos[i].cm_E);
 #endif
 }
 else
 {
 waypointsPos[i].cm_N = 0;
 waypointsPos[i].cm_E = 0; //default to Origin if bogus
 }

 }
}
//
//6. Navigation
//

//
// Function: getOriginGPSfromGUI
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Sets the lat and long of the GPSPosition struct for the
// Origin's lat, long from waypoint 0.
//
void getOriginGPSfromGUI(void)
{

 initPos_lat = waypoints[0].lat; //save the float value as degrees from
GUI
 //toss out decimal portion, keep integer degrees
 OriginPos.lat_degrees = (int) waypoints[0].lat;
 initPos_long = waypoints[0].lon;
 OriginPos.lon_degrees = (int) waypoints[0].lon;
 //make degrees minutes, decimal minutes for GPS style format
 //get the fraction remainder left over in floating pt form
 // and multiply by 60 to make decimal minutes
 OriginPos.lat_minutes = (waypoints[0].lat - OriginPos.lat_degrees) *60;
 OriginPos.lon_minutes = (waypoints[0].lon - OriginPos.lon_degrees)*60;
 OriginPos.lat_direction = 'N'; //assume N and West hemispheres
 OriginPos.lon_direction = 'W';

}

 165

//
// Function: initNav
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Solves for some global variables R1, R2, and the Origin's
// lat and long in radians to speed up calcs in the flat Earth approx. math.
//
void initNav(void)
{
 int i;
 getOriginGPSfromGUI(); // input the GPS position for the Origin
 // set the Origin's GPS lat, long
 //solve for the Origin's lat, long in radians for flat Earth nav approx.

 if(OriginPos.lat_direction=='S') // get the sign convention correct.
 initPos_lat= 0 - initPos_lat; //negative values in Southern
hemisphere
 // make radians for math in flat Earth
 initPos_lat = (double) rad(initPos_lat);

 if(OriginPos.lon_direction=='E')
 initPos_long= 0 - initPos_long; //negative values for East hemisphere
 // make radians for math in flat Earth
 initPos_long = (double) rad(initPos_long);
 //find R1 and R2, radii of curvature in km
 //esquared is measure of flatness from WGS84 baseline
 R1 = a*(1 - esquared) / pow((1- esquared* pow(sin(initPos_lat), 2)),
1.5);
 R2 = a/(sqrt(1- esquared* pow(sin(initPos_lat),2)));
 DRpos.cm_N = 0;
 DRpos.cm_E = 0; // put the robot at the Origin
 for(i = 0; i< 3; i++) //init the dr, too
 {
 vE[i] = 0;
 vN[i] = 0; // zero initial speed
 }
}

//
// Function: makeFakeGPSpos
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Creates a sentence that simulates GGA sentence that the GUI
// expects. currentLat and currentLong are found from distance N. and dist
// E. of the Origin summed with the lat, long of the Origin. Going Eastward
// subtracts longitude from Origin's longitude.
//
nodebug void makeFakeGPSpos(void)
{
 double currentLat, currentLong;
 int latDeg, longDeg;
 float flatDeg, flongDeg;
 float latMin, longMin;

 //find "lat" and "long" from the distance in cm N and E. of the Origin of
flat Earth
 //distN is in cm so divide it by 1E5 for km
 currentLat = DRpos.cm_N / (R1* 1E5) + initPos_lat;
 // lat and long in radians
 currentLong = initPos_long - DRpos.cm_E / (R2* 1E5 * cos(initPos_lat)) ;

 166

 //convert to degrees
 flatDeg = deg(currentLat);
 flongDeg = deg(currentLong);

 //break into degrees and decimal minutes
 latDeg = (int) flatDeg; // get the integer degree values
 longDeg = (int) flongDeg;
 latMin = (flatDeg - latDeg)*60; //get the fraction remainder left over
in

//floating pt form
 longMin = (flongDeg - longDeg)*60; // multiply by 60 to make decimal
minutes
 //fake time? in fake NMEA sentence
 sprintf(fakeGPSsentence, \
 "GPGGA,223003.8,%02d%09.6f,N,%03d%09.6f,W,1,05,1.1,,\n", latDeg,latMin, \
 longDeg, longMin);
}

//
// Function: navigation
// Programmer: Kirk Volland
// Input: integer last waypoint number, integer next waypoint number for
// array waypointsPos[]
// Output: Nil
// Description: Solves for mag heading needed to move from current position
// (in cm_N and cm_E of Origin) to the next waypoint.
//

nodebug void navigation(int lastWaypt, int nextWaypt)
{

 long dN, dE; //difference (delta) North centimetrs
 //dN = waypoint N_cm - current N_cm
 //dE = waypoint E_cm - current E_cm

 double range; //range in cm to wypt from current position

 float gamma, course;

 int heading_diff;

 //find delta North (dN) and delta East (dE)
 dN = waypointsPos[nextWaypt].cm_N - DRpos.cm_N;
 dE = waypointsPos[nextWaypt].cm_E - DRpos.cm_E;

 range = sqrt(pow(dN, 2) + pow(dE, 2)); //pythag. theorem
 theta = rad(300);

}

//
//7. DR
//

//
// Function: wheel
// Programmer: Kirk
// Input: address byte of I2C device, register 0x01, 0x02, or 0x03 memory
// to read wheel angular speed in Hz.
// Output: integer wheel speed in Hz or negative integer if I2C error

 167

// Description: This function uses I2C lib to call device with addrsByte to
// read the value of the memory 0x01 for wheel 1 speed, 0x02 for wheel 2 speed,
// or 0x03 for wheel 3 speed. Returns wheel speed in Hz.
//
nodebug int wheel(char addrsByte, char registerByte)
{
 char cmpd;
 int err;
 int wheelFrq, i2cTries;
 if (err = i2c_startw_tx())
 {
 i2c_stop_tx();
 return -10 + err; // Error. Return clock stretching too long
 }
 if (err=i2c_wr_wait(addrsByte))
 {
 i2c_stop_tx();
 return -20+err; // Return no ack on slave (retried)
 }
 if (err=i2c_write_char(registerByte))
 {
 i2c_stop_tx();
 return -30+err; // Return no ack on data register 01
 }
 //i2c_Delay(10);
 if (err=i2c_startw_tx())
 {
 i2c_stop_tx();
 return -40+err; // Return too long stretch on read
 }
 if (err=i2c_wr_wait(addrsByte +1))
 {
 i2c_stop_tx();
 return -50+err; // Send read to slave - no ack (retried) return -5
 }

 if(err=i2c_read_char(&cmpd))
 {
 i2c_stop_tx();
 return -60+err;
 }
 else
 {
 for (i2cTries = 0; i2cTries < 4; i2cTries ++)
 {
 if (err = i2c_send_ack())
 {
 // nothing. try again
 }
 else // no error. OK reception of ack from slave
 {
 i2c_stop_tx();

 wheelFrq = (int) (cmpd);
 return wheelFrq; // normal exit
 }
 }
 i2c_stop_tx();

 wheelFrq = (int)(cmpd); //freq is 2 times the reported
 return wheelFrq; // not recv'd ack from slave
 }

 168

}

//
// Function: calcVeloRobotFrame
// Programmer: Kirk
// Input: float omega1, omega2, omega3 in rad/s
// Output: Nil
// Description: Finds obsv'd speeds along robot's y and x axis from wheel speed
// data. Finds direction of observed motion theta WRT to y axis. Solves
// magnitude of velocity vector and robot chassis rotation.
//
nodebug void calcVeloRobotFrame(float omega1, float omega2, float omega3)
{
 obsVx = RADWHEEL/3 * (-2*omega1 + omega2 + omega3);
 // omega1 perpendicular, no contribution to y axis motion
 obsVy = RADWHEEL/(sqrt(3)) * (omega3 - omega2);
 obsChassisOmega = RADWHEEL/3 * (omega1 + omega2 + omega3);
 // find magnitude of v
 obsV = sqrt(pow(obsVx,2) + pow(obsVy,2));
 // find obsv'd theta (velocity vector WRT robot's y axis)
 if(fabs(obsVx) >0 && fabs(obsVy) > 0)
 obsTheta = atan2(obsVx,obsVy);
 else
 obsTheta = 0;

}
//
// Function: calcVeloEarthFrame
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Takes robot velocity WRT robot's axes
// and translates it into Earth Frame using global var heading.
//
nodebug void calcVeloEarthFrame(void)
{
 float gamma; // sum of heading and
 // observed velocity vector direction obsTheta
 //save 2nd oldest reading as the 3rd oldest
 vE[2] = vE[1];
 vN[2] = vN[1];
 //save newest reading as the 2nd oldest
 vE[1] = vE[0];
 vN[1] = vN[0];

 //update the newest readings in array element 0
 //heading is 0 to 255 1 byte value that corresponds to angle 0 to 2*PI
 gamma =((float) (2*PI/255 * heading))+ obsTheta;

 gamma = fmod(gamma, (2*PI)); // don't want values greater than 2*PI
 //test if gamma is in quadrant I, II, III or IV
 if(gamma < PI/2)
 {
 vE[0] = obsV * sin(gamma); //quadrant I
 vN[0] = obsV * cos(gamma);
 }
 else
 {
 if(gamma < PI)
 {
 vE[0] = obsV * sin(PI - gamma); // gamma > PI/2 but less than PI
 vN[0] = - obsV * cos(PI - gamma); // quadrant II

 169

 }
 else
 {
 if(gamma < 3*PI/2)
 {
 vE[0] = - obsV * sin(gamma- PI); //quadrant III
 vN[0] = - obsV * cos(gamma- PI);
 }
 else
 {
 vE[0] = - obsV * sin(2*PI - gamma); //quadrant IV
 vN[0] = obsV * cos(2*PI - gamma);
 }
 }

 }

}

//
// Function: dr
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Takes robot velocity in Earth Frame and multiplies by time
// since last DR to get the estimated position in N. and E components. Adds
// N. and E. components to last position to get currentDRposition.
//
nodebug void dr(void)
{
 //multipy speed times time in ms since last DR update
 float avgVN, avgVE;
 int i;
 avgVN = 0;
 avgVE = 0;
 //make average velocities over the last three readings
 for(i= 0; i< 3; i++)
 {
 avgVN = vN[i] + avgVN;
 avgVE = vE[i] + avgVE;
 }
 //avgVN = avgVN/3;
 //avgVE = avgVE/3;
 avgVN = vN[0];
 avgVE = vE[0];
 DRpos.cm_N = DRpos.cm_N + (long) (avgVN * (float) (MS_TIMER -
DRtime)/1000);
 DRpos.cm_E = DRpos.cm_E + (long) (avgVE * (float) (MS_TIMER - DRtime)/1000);

 DRtime = MS_TIMER; //save current time as "start" time for next round of DR
 #if DEBUGDR
 printf("DR posit N %ld cm E %ld cm\n", DRpos.cm_N, DRpos.cm_E);
 #endif
}

//
//8. Collision Advoidance
//

//
// Function: doRandSpin
// Programmer: Kirk Volland

 170

// Input: Nil
// Output: long integer value in ms to delay as motors make robot spin
// Description: Calls randNum for value 0 to 1.0 to make a time in milisec
// between 900 and 1900 ms. Sets globals and returns the time delay back to
// main() loop.
//
long doRandSpin(void)
{
 float randNum; // a float value for coefficent in range 0.0 <=
randNum < 1.0
 long randTurnTime; // time in ms. want values 500 to 1500 ms
 int dir; // random direction
 randNum = rand(); // find random value from 0 to 1.0
 // random long value from 900 to 900 +1000 = 1500 ms
 randTurnTime = (long) (900 + randNum *1000);

 dir = (int) randTurnTime % 2;
 chassisOmega = SLOWROTATESPEED;

 spinInPlace();
 return randTurnTime;
}

//
// Function: getIRVolts()
// Programmer: Kirk Volland
// Input: Nil
// Output: Nil
// Description: Gets analog voltage inputs from the IR sensors. Stores values
// in the irRanges global array. Copies last round of readings to
irRangesOld1.
// Copies round before the last round to irRangesOld2.
//
//
void getIRVolts(void)
{
 int irNum;
 //record irRangesOld1 to irRangesOld2
 for(irNum = 0; irNum < 6; irNum ++)
 irRangesOld2[irNum] = irRangesOld1[irNum];

 //record last round of IR ranges before overwriting them
 for(irNum = 0; irNum < 6; irNum ++)
 irRangesOld1[irNum] = irRanges[irNum];

 //sample 6 IR sensors
 //start with zero and count up to 5 for A to D on channels 0 to 5
 //newest IR data
 for(irNum = 0; irNum < 6; irNum++)
 irRanges[irNum] = anaInVolts(irNum, 3);

 //average last three readings
 for(irNum = 0; irNum < 6; irNum++)
 irRangesAvg[irNum] = (irRanges[irNum] + irRangesOld1[irNum])/2;
}

//
// Function: irCloseContact
// Programmer: Kirk
// Input: Nil

 171

// Output: int 0 if no close contact.
// Return retVal = retVal + 2^(sensor number) if sensor number has close
contact
// If all sensors have closecontact then retVal = 2+ 4+ 8+ 16 + 32 + 64 = 126
// that detected the close in object.
// Description: Tests irRangesAvg[] for readings that exceed the close range
// limit minus a speed scaling value. As speed goes up, the IR range
//
//

int irCloseContact(void)
{
 int i;
 int retVal;
 retVal = FALSE; //default to no close IR contact
 for(i= 1; i < 7; i ++)
 { //stop if any of the avg two values is close contact

 if(irRangesAvg[i-1] >= IRSTOP_RNG - .5*v) //scale threshold with
speed
 retVal = retVal + pow(2,i);
 }
 return retVal; //return 0 or the integer representation of the sensors
 //that have close IR contacts
}

//
//9. sonar
//

//
// Function: getSonarRanges(void)
// Programmer: Kirk
// Input: void
// Output: int 0 success -2 fail for no end flag detected -1 fail no start
flag
// Description: Reads in the start flag then number of
// bytes = NUM_SONAR_AZIMUTHS
//
nodebug int getSonarRanges(void)
{
 int azimuthNum, i;
 char input_char1st, input_char2nd;
 int success; // good test found start of the sonar sentence

 i = 0; //back up check to prevent getting stuck
 // waiting in case sonar not operating

 while((input_char1st = serCgetc()) == -1);
 while((input_char2nd = serCgetc()) == -1);

 if(input_char1st == 0xFE && input_char2nd != 0xFE)
 success = TRUE;

 // while newest char and 2nd newest char
 // are not equal to start flag followed by some data value that's not 0xFE
 while(!success)
 {

 //eat up chars until we get a match for the start of
 //range sentence flag. Flag is 0xFE
 input_char1st = input_char2nd;

 172

 while((input_char2nd = serCgetc()) == -1);// update the newest
char value
 if(input_char1st == 0xFE && input_char2nd != 0xFE)
 success = TRUE;
 }
 input_char = input_char2nd; // we've recv'd a good data byte, so keep it
 // after we get the start of range sentence flag read in 1 byte
 // for each range value from 0 to NUM_SONAR_AZIMUTHS. After range bytes
 // get the byte that indicates which value is the newest one of the 20
 // range bytes. All other range bytes need to be shifted
 // by timeLate (ms) * - robot's velocity vector .
for(azimuthNum = 0; azimuthNum < NUM_SONAR_AZIMUTHS+1; azimuthNum++)
 {
 if(azimuthNum != NUM_SONAR_AZIMUTHS)
 {
 if(input_char == 0x02)
 sonarRanges[azimuthNum] = NOCONTACT; // default no contact range
 else //save float to array
 sonarRanges[azimuthNum]=(float) SONARCONVERSION * input_char;

 }
 else //save the integer number of the newset reported reading
 newestSonar = (int) input_char;
 while((input_char = serCgetc()) == -1); //get another char
 }

 if(input_char != 0xFB)
 return -2; //error no end flag
 else
 return 0; // normal got full sentence

}

//
// Function: checkSonarRanges()
// Programmer: Kirk
// Input: Nil
// Output: int value of the sectors around robot that have obstructions
// Description: Function tests sonarRanges array for contacts that are closer
// than a minimum value.
//
//
int checkSonarRanges(void)
{

 int retVal;
 int i;
 objectAhead = FALSE; //default to no object detected
 closeContact = FALSE; //default no close in contacts
 retVal = 0;
 for(i = 0; i < NUM_SONAR_AZIMUTHS ; i++)
 { //test if object ahead of the 300 vector
 if(i >= 15 && i <= 18)
 {
 if(sonarRanges[i] <= MIDRANGE)
 {
 objectAhead = TRUE;
 }
 }

 if(sonarRanges[i] <= MIDRANGE) //range = 250 means no contacts
 {

 173

 retVal = retVal + pow(2,i);
 //look for close contacts either side of 300 deg axis
 if(sonarRanges[i] <= CLOSERANGE && (i >= 14 && i <=19))
 closeContact = TRUE;
 }
 }

 return retVal;
}

//
//10. Motion
//

//
// Function: setMotorVolts
// Programmer: Kirk Volland
// Input: float voltage to motor 1, int direction fwd/rev for motor 1
// float voltage to motor 2, int dir for motor 2
// float voltage to motor 3, int dir for motor 3
// Output: int 0 if OK transmission of motor voltages, 1 if failed
// Description: Three float voltages are the analog voltages to output to the
// motors.
//
//
int setMotorVolts(float spd1, int dir1, float spd2, int dir2, float spd3, \
int dir3)
{

 int nIn1, i;
 //do a sanity check on voltages to be sure they are in acceptable range
 // less than or equal 4.0 V or greater than or equal to 0.0
 if((spd1 <= MAXVOLTS) && (spd2 <= MAXVOLTS) &&(spd3 <= MAXVOLTS) \
 && (spd1 >= STOPVOLTS) && (spd2 >= STOPVOLTS) && (spd3 >= STOPVOLTS))
 {
 digOut(dir1Chan, dir1); //set directions 1, 2 and 3
 digOut(dir2Chan, dir2); //set directions 1, 2 and 3
 digOut(dir3Chan, dir3);
 anaOutVolts(mtr1Chan, spd1); //set voltages for 1, 2 and 3
 anaOutVolts(mtr2Chan, spd2);
 anaOutVolts(mtr3Chan, spd3);
 #if DEBUGPRINT
 printf("setMotorVolts m1 %f d1 %d m2 %f d2 %d m3 %f d3 %d\n", \
 mtr1Spd, dir1, mtr2Spd, dir2, mtr3Spd, dir3);
 #endif
 if((spd1 != STOPVOLTS || spd2 != STOPVOLTS || spd3 != STOPVOLTS)
&& \
 robotNotRotating)
 robotStopped = FALSE;
 return 0; //normal exit
 }
 }

//
// Function: stopMotors()
// Programmer: Kirk Volland
// Input: nil
// Output: int 0 if OK transmission of motor voltages, 1 if failed
// Description: Sets global direction and motor speed variables to reverse and

 174

// stop. Calls setMotorVolts().
//
//
int stopMotors()
{
 //dir1 = REV_DIR;
 mtr1Spd = STOPVOLTS;
 //dir3 = REV_DIR;
 mtr3Spd = STOPVOLTS;
 mtr2Spd = STOPVOLTS;
 //dir2 = REV_DIR;

 v = 0; //set globals to zero
 chassisOmega = 0;
 cmdVelocity = 0;

 //set flags
 holdHeading = FALSE;
 robotNotRotating = TRUE;

 //output the voltages
 if(! setMotorVolts(mtr1Spd, dir1, mtr2Spd, dir2, mtr3Spd, dir3))
 return 0;
 else
 return 1; // failed to properly set voltages to all motors
}
//
// Function: spinInPlace()
// Programmer: Kirk Volland
// Input: nil
// Output: int 0 if OK transmission of motor voltages
// retVal = retVal + 2^motrNum failed due to topping out
// Description: Uses global chassisOmega for direction and rotational speed.
// Sets v =0 and sets global motor speed vars to SLOWROTATESPEED.
// Calls setMotorVolts().
//
//
int spinInPlace(void)
{
 float omega1, omega2, omega3;
 int retVal;
 retVal = 0; // default expect normal operation, not topping

 if(chassisOmega > 0) // forward direction is counter clockwise rotation
 {
 dir1 = FWD_DIR;
 dir3 = FWD_DIR;
 dir2 = FWD_DIR;
 }
 else
 {
 dir1 = REV_DIR;
 dir3 = REV_DIR;
 dir2 = REV_DIR;
 }
 v = 0;
 cmdVelocity = 0;

 omega1 = chassisOmega;
 omega1 = fabs(omega1); //output must be positive voltage. find absolute
value
 if(omega1 > MAXOMEGA) //limit output to maximum wheel rotational speed

 175

 omega1 = MAXOMEGA;
 omega2 = omega1;
 omega3 = omega1;
 //set flags
 holdHeading = FALSE;
 robotNotRotating = FALSE;
 mtr1Spd = freqToVolts(omega1);
 if(mtr1Spd > MAXVOLTS)
 {
 mtr1Spd = MAXVOLTS;
 retVal = 2; //set the 2^1 bit for to show topping out motor1
 }
 mtr2Spd = (.99)* freqToVolts(omega2); // multiply by coeff. to account

 // for weight distribution
 if(mtr2Spd > MAXVOLTS)
 {
 mtr2Spd = MAXVOLTS;
 retVal = retVal + 4; //set the 2^2 bit to indicate topping out
motor2
 }
 mtr3Spd = (1.10)* freqToVolts(omega3); //multiply the voltage for added

 //weight on number 3 wheel
 if(mtr3Spd > MAXVOLTS)
 {
 mtr3Spd = MAXVOLTS;
 retVal = retVal + 8; // set the 2^3 bit to indicate topping motor
3
 }

 //output the voltages
 if(! setMotorVolts(mtr1Spd, dir1, mtr2Spd, dir2, mtr3Spd, dir3))
 return retVal;
 else
 return retVal; // failed to properly set voltages to all motors
}

//
// Function: vector()
// Programmer: Kirk Volland
// Input: nil
// Output: int 0 if OK
// Description: calls solveMotorSpeeds to solve for motor speeds based on
global
// vars v, theta and chassisOmega. chassisOmega negative is clockwise
rotation.
// chassisOmega in rad/s
//
//
int vector(void)
{
 solveMotorSpeeds();
 //set flags
 holdHeading = TRUE;
 robotStopped = FALSE; //default value false, then check
 robotNotRotating = TRUE; //default to TRUE , then check

 if(v == 0)
 robotStopped = TRUE;
 if(chassisOmega != 0 && robotStopped) // if chassisOmege is anything

 176

//BUT zero, then it's rotating
 robotNotRotating = FALSE; //and robotNotRotating is FALSE

 //output the voltages
 if(! setMotorVolts(mtr1Spd, dir1, mtr2Spd, dir2, mtr3Spd, dir3))
 {
 return 0;
 }
 else
 return 1; // failed to properly set voltages to all motors
}

//
// Function: solveMotorSpeeds(float chassisOmega)
// Programmer: Kirk Volland
// Input: nil
// Output: int 0 if all calculated motorspeeds are within limits (MAXVOLTS)
// if motor speed 1 would exceed (topping) then retVal = retVal + 2
// if motor speed 2 would exceed (topping) then retVal = retVal + 4
// if motor speed 3 would exceed (topping) then retVal = retVal + 8
// Description: Uses global vars v, theta and chassisOmega.
// Decomposes v into x and y vector components where y axis ponints to motor 1.
// Finds each wheel's angular speed needed to produce the velocity
// vector v in direction theta. If the calculated analog speed signal exceeds
// MAXVOLTS, the signal is limited to MAXVOLTS. Global motor speed vars
// mtr1Spd, mtr2Spd, mtr3Spd and global directions dir1, dir2, dir3 are set.
//
int solveMotorSpeeds(void)
{
 int retVal; //return value signals if voltage is within limits 0 =
normal
 // output byte in binary...
 // 2^3 2^2 2^1 2^0
 // topping motor3 topping motor2 topping motor1 0
norm
 char msg[256];
 float vx, vy;
 float omega1, omega2, omega3; //wheel angular speeds in rad /s
 float veloConst; //scales omega to Hertz measured by optical tachometer
 retVal = 0; //default OK

 veloConst = 12.566; //12.566 rad/s corresponds to velocity v = 1.0
 //scales velocity v to a range zero to
1.0
 //decompose v and theta into x and y axis components
 vx = v* veloConst * sin(theta);
 vy = v* veloConst * cos(theta);

 //do three dot products to solve for wheel speeds
 //wheel 1
 // x axis + y axis + chassis rotation angular speed
 omega1 = -vx + 0 + chassisOmega;

 if(omega1 < 0)
 dir1 = REV_DIR; //reverse if direction is negative
 else
 dir1 = FWD_DIR;

 omega1 = fabs(omega1); //output value positive voltage. find abs. value
 if(omega1 > MAXOMEGA) //limit output to maximum wheel rotational speed

 177

 omega1 = MAXOMEGA;

 //wheel 2
 // x axis + y axis
 omega2 = vx*.5 - vy*.8660 + chassisOmega; //dot product decomposed
into

 // x and y components
 if(omega2 < 0)
 dir2 = REV_DIR; //reverse direction
 else
 dir2 = FWD_DIR;

 omega2 = fabs(omega2);
 if(omega2 > MAXOMEGA) //limit output to maximum wheel rotational speed
 omega2 = MAXOMEGA;
 //wheel 3
 // x axis + y axis
 omega3 = vx*.5 + vy*.8660 + chassisOmega;

 if(omega3 < 0)
 dir3 = REV_DIR;
 else
 dir3 = FWD_DIR;

 omega3 = fabs(omega3);
 if(omega3 > MAXOMEGA) //limit output to maximum wheel rotational speed
 omega3 = MAXOMEGA;

 //solve for analog output voltage values
 //apply correction coefficients to motors 2 and 3 voltage signals
 //omega1, omega2, omega3 are the wheel speeds of each wheel in rad/s
 mtr1Spd = freqToVolts(omega1);
 if(mtr1Spd > MAXVOLTS)
 {
 mtr1Spd = MAXVOLTS;
 retVal = 2; //set the 2^1 bit for to show topping out motor1
 }

 mtr2Spd = 0.99 * freqToVolts(omega2);
 if(mtr2Spd > MAXVOLTS)
 {
 mtr2Spd = MAXVOLTS;
 retVal = retVal + 4; //set the 2^2 bit to indicate topping out
motor2
 }
 mtr3Spd = (1.10)* freqToVolts(omega3);
 if(mtr3Spd > MAXVOLTS)
 {
 mtr3Spd = MAXVOLTS;
 retVal = retVal + 8; // set the 2^3 bit to indicate topping motor
3
 }
 return retVal;
}

//
// Function: freqToVolts(float omegaIn)
// Programmer: Kirk Volland
// Input: float omegaIn radians/s rotation speed wheel
// Output: float voltsOut in Volts to apply to DAC
// Description: Maps desired wheel angular speed to analog signal from DAC.

 178

//

float freqToVolts(float omegaIn)
{
 float freq; //tachometer frequency (100 cycles per rev)
 float voltsOut; //analog voltage for CPU to send out
 //check if speed is zero or too low
 if (omegaIn < .3770)
 return (0); // minimum rotation rate 6 Hz
 else //for linear response region of the tach circuit
 {
 freq = omegaIn*100/(2*PI); //tach freq
 voltsOut = (freq + 98.32) / 76.73;
 return voltsOut;
 }
} //end funct

//
//11. Control
//

//
// Function: manual_control
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: This function get the command for manual control from comms
// module. Solves voltages needed to produce the vector direction and velocity
// magnitude. Then sets analog voltages.
//
void manual_control()
{
 char *buf;//[UDP_BUFF_SIZE];
 char thetaStr[10], veloStr[10], omegaStr[10];

 //strcpy(buf,GetMessageFromCommModule(&ManCtrlChan));
 buf=GetMessageFromCommModule(&ManCtrlChan);

 #if DEBUGPRINT
 printf(" manual buff chan %s\n", ManCtrlChan.Buff);
 printf(" buf : %s\n", buf);
 #endif
 strcpy(thetaStr,strtok(buf," ")); //theta pass in radians
 strcpy(veloStr, strtok(NULL," ")); // velocity should be float 0 to 1.0
 strcpy(omegaStr,strtok(NULL," ")); // omega should be about 0 to 12
 #if DEBUGPRINT
 printf("theta %s, velocity %s chassis omega %s\n", \
 thetaStr,veloStr, omegaStr);
 #endif
 theta = atof(thetaStr);
 v = atof(veloStr);
 cmdVelocity = v;
 chassisOmega = atof(omegaStr);
 if(v ==0 && chassisOmega == 0)
 stopMotors(); //do the easy thing first if just stopping
 else
 {
 if(v ==0)
 spinInPlace(); // v is 0 but user commanded rotation
 else
 {

 179

 cmdHeading = heading ; //convert course to 1 byte integer 0 to
255
 imuHeading = 0; //reset the imu heading reference
 vector(); //move in that direction
 }

 }
}

//
// Function: initRobot
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Sets default start values for many global vars. Sets up RS232
// serial ports to IMU and sonar. Inits motors to stopped. Manual control.
//
void initRobot(void)
{
 //Set up udp ports for communication
 InitUdpComm();
 tcp_tick(NULL);

 //initialize serial port C to sonar detector
 serMode(0); // setup BL2600 for three RS232 three-wire
ports
 serCopen(57140); //open port with 57140 baud/s
 serCdatabits(0); //set to 8 bits
 serCparity(0); //no parity
 serCwrFlush();
 serCrdFlush();
 #if DEBUGPRINT
 printf("serial C init complete\n");
 #endif
 //set up serial port for RS232 from the IMU
 // Open serial port
 serFopen(BAUD232);
 serMode(0);
 // Clear serial buffers
 serFwrFlush();
 serFrdFlush();

 //control (motor) initialization
 dir1 = REV_DIR;
 dir2 = FWD_DIR;
 dir3 = FWD_DIR;
 stopMotors();
 manual_control_flag=1;
 #if DEBUGPRINT
 printf("motors stopped \n");
 #endif
 cmdHeading = 0;
 imuHeading = 0;
 newImu = FALSE;
 imuZeroPoint = 510;
 heading = 0;
 headingLast = 0;
 //init the dr velocities to zero
 obsV = 0;
 obsVx = 0;
 obsVy = 0;

 180

 //set a default value to somewhere in North America
 //until user sends waypoint data
 waypoints[0].lat = 36.600;
 waypoints[0].lon = 121.870;
 getOriginGPSfromGUI(); //init the nav. Origin until can get GUI input
 initNav();
 //Navigation initialization
 current_wp_count=1; //start at waypoint 0 and move from there
 //to 1, 2, 3, etc.
 newDR= FALSE;
 compass(0xC0, 0x01);
 //error message init
 strcpy(ErrString, "");
}

//
// Function: main
// Programmer: Kirk
// Input: Nil
// Output: Nil
// Description: Sets up BL2600 I/O pins. Calls initRobot and then inits vars
// with scope inside main.
// Enters while loop with costates.
//
void main(void)
{
 auto int i,j, k, l, m, sendCompass, channel;
 auto int irSensorVal;
 auto float tempHeading;
 float avgVN, avgVE;
 auto int headingErr;
 auto float imuIntegralHdgErr;

 auto char val[20];
 auto char CompassString[64];//for comms to control
 brdInit();
 // Enable digital outputs DIO 00 and 1 for I2C with external Pullup to +K
 // Jumper J1 set to +K
 // Enable digital output DIO 02,03, 04 using +K 5V with intenal pullups
 digOutConfig(DIGOUTCONFIG);
 for(channel = 0; channel < 2; channel ++)
 {
 digOut(channel, 1); // let SDA and SCL float up
 }
 i2c_init(); // initialize I2C in library function
 anaOutConfig(0,0); // Analog outputs Unipolar 0 to 10V asyncrhonous
 // Analog inputs
 // Analog Configure channel pairs 0,1,2,3 for Single-Ended unipolar
 // mode of operation.
 // (Max voltage range is 0 - 20v) NOTE BL2600 can do 0 to 20 V
 anaInConfig(0, 0);
 anaInConfig(1, 0);
 anaInConfig(2, 0);
 anaInConfig(3, 0);
 anaOutPwr(1); // enable power to the DAC
 initRobot();

 i = 0;//init to zero
 j = 0;
 irSensorVal = 0;

 181

 watchDogTime = MS_TIMER;
 sendCompass = FALSE;
 while(1) //do a lot
 {

 costate
 {
 receive_packet_from_port(MAN_CTRL_PORT);

 if (CheckDataPresent(&ManCtrlChan)==PRESENT)
 {
 #if DEBUGPRINT
 printf("\n ManCtrlChan-> %s\n",ManCtrlChan.Buff);
 #endif
 //ClearDataPresent(&ManCtrlChan);
 }
 waitfor(DelayMs(163));

 }

 costate
 {
 receive_packet_from_port(WYPNT_PORT);
 if (CheckDataPresent(&WayPtChan)==PRESENT)
 {
 #if DEBUGPRINT
 printf("\n WayPtSock-> %s\n",WayPtChan.Buff);
 #endif
 // ClearDataPresent(&WayPtChan);
 }
 waitfor(DelayMs(919));

 }
 costate //waypt costate
 {
 waitfor(CheckDataPresent(&WayPtChan));
 #if DEBUGPRINT
 printf("man cont flag %d\n",manual_control_flag);
 printf("\n WayPtChan, wypt task-> %s\n",WayPtChan.Buff);
 #endif
 manual_control_flag= FALSE;
 ClearDataPresent(&ManCtrlChan);
 getwaypoints();
 initNav();
 makeWayPts();
 current_wp_count = 1;
 ClearDataPresent(&WayPtChan);
 v = 0.8;
 cmdVelocity = v;
 theta = rad(300); // set the vector to 060 degrees
 chassisOmega = 0;

 cmdHeading = heading ; //convert course to 1 byte int 0 to 255
 imuHeading = 0; //reset this to zero for the next leg
 vector(); //vector robot off in the 060 degree direction

 strcat(ErrString, "Autonomous mode active\n");
 SendToCommModule(&ErrorChan, ErrString);
 SendErrorToControlStation();
 waitfor(DelayMs(2767));
 }

 182

 //read I2C compass
 //get a compass reading with I2C bus commands
 costate
 {
 if(compass(0xC0, 0x01) == 0) // call address 0xC0
 newCompass = TRUE; // set the flag if compass data is OK

 waitfor(DelayMs(331)); // take another reading after delay
 }

 costate //alternate send compass then send GPS to GUI
 {
 if(sendCompass)
 {
 strcpy(CompassString, "");
 tempHeading = 360 * (float) heading/255; // 1 byte value to
degrees
 sprintf(CompassString, " %f,", tempHeading);

 SendToCommModule(&CompassChan, CompassString);
 SendCompassToControlStation();
 sendCompass = FALSE;
 }
 else
 {
 SendToCommModule(&GpsChan, fakeGPSsentence);
 SendGpsToControlStation();

 //puts(fakeGPSsentence);
 sendCompass = TRUE;
 }
 waitfor(DelayMs(503)); // take another reading after delay
 }

costate // get sonar ranges
 {
 serCrdFlush(); //flush out any old data
 waitfor((input_char = serCgetc()) != -1); //wait until data present
 // there is serial data present on serC
 waitfor(DelayMs(59)); //Some data is present, allow time for PIC to send
 // about 2 sentences
getSonarRanges();
 waitfor(DelayMs(131)); //repeat after about .157 + 59 = .2 s

 } //end get sonar data costate

 costate //update motor speeds and random walk away from obstacle
 {
 if (! manual_control_flag)
 {
 checkSonarRanges();
 irSensorVal = irCloseContact();
 if(closeContact || irSensorVal >= 32)
 {
 #if DEBUGPRINT
 printf("stopping for sonar contact\n");
 #endif
 #if DEBUGSONAR
 printf("irSensor Value %d , IR Volts: %.1f %.1f %.1f %.1f %.1f %.1f\n" ,\
 irSensorVal,irRangesAvg[0],irRangesAvg[1],\

 183

 irRangesAvg[2], irRangesAvg[3], irRangesAvg[4],irRangesAvg[5]);
 #endif

 stopMotors();

 waitfor(DelayMs(211)); //slow down and stop
 //reverse direction for 400 ms
 v = CRAWLSPEED; //assume reverse is clear since just came from there

 theta = rad(120); // set the vector to 120 degrees
 chassisOmega = 0;
 cmdHeading = heading ; //convert course to 1 byte integer 0 to 255
 imuHeading = 0; //reset this to zero for the next leg
 vector(); //vector robot reverse dircection to separate from obstacle
 waitfor(DelayMs(800));

 stopMotors(); //stop after backing up
 waitfor(DelayMs(100)); //wait for motors to stop
 spinDelay = doRandSpin();
 waitfor(DelayMs(spinDelay));
 stopMotors();
 waitfor(DelayMs(500)); //wait and check IR sensors along new route
 if(irSensorVal) //do this if it was IR detected
 { if(irSensorVal >= 32)
 {
 while((irSensorVal = irCloseContact()) &&
irSensorVal >=32)
 {
 // find a random turn duration in ms 900 to 1900 ms
 spinDelay = doRandSpin();

 waitfor(DelayMs(spinDelay));
 stopMotors();
 waitfor(DelayMs(1033)); // delay 1 s to so IR check path
 // and allow user to send manual commands
 }
 }
 else
 {
 waitfor(DelayMs(1033)); //just delay 1 s and check with IR
 }
 }
 else // do this if it was sonar detected
 {
 waitfor(DelayMs(2033)); //check the area
 checkSonarRanges();

 while(sonarRanges[15] < CLOSERANGE || sonarRanges[16] <
CLOSERANGE \
 ||sonarRanges[17] < CLOSERANGE || sonarRanges[18] < CLOSERANGE)
 // try a spin in place then wait for sonars to check area clear
 {

 // find a random value of ms between 900 and 1900 turn duration
 spinDelay = doRandSpin();

 waitfor(DelayMs(spinDelay));
 stopMotors();
 waitfor(DelayMs(2033)); // delay 2s. sonars check path
 // and allow user to send manual commands
 checkSonarRanges();

 184

 }

 } //else

 //closeContact = FALSE; //kludge fix. why is it staying TRUE?
 v = CRAWLSPEED; //if clear then go again, but go slow

 theta = rad(300); // set the vector to 060 degrees
 chassisOmega = 0;
 cmdHeading = heading; //convert course to 1 byte integer 0 to 255
 imuHeading = 0; //reset this to zero for the next leg
 vector(); //vector robot off in the 300 degree direction
 waitfor(DelayMs(600)); //wait to clear obstacle

 for(l = 0; l < 8; l++)
 {
 if(!closeContact)
 {
 checkSonarRanges();
 v = CRAWLSPEED;
 waitfor(DelayMs(600));
 }
 else
 stopMotors();
 break;
 }

 } //closecontact

 else //no close contacts. Check for medium range contacts
 {
 if(objectAhead) // then just slow down
 {
 v = CRAWLSPEED; //update the velocity to slow down
 vector();
 }

 else // OK speed back up
 {
 cmdVelocity = 0.8;
 v = cmdVelocity;
 vector();
 }
 } //else
 }//mancontrol
 waitfor(DelayMs(131));
 } //costate

 costate
 {
 //print sonar ranges every 2 seconds
 #if DEBUGPRINT
 printf("\nranges 0 to 09: %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f
%.1f \n" ,\
 sonarRanges[0], sonarRanges[1],\
 sonarRanges[2], sonarRanges[3], sonarRanges[4], \
 sonarRanges[5], sonarRanges[6], sonarRanges[7], \
 sonarRanges[8], sonarRanges[9]);

 185

 printf("\nranges 10 to 19: %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f %.1f
Newest: %d\n" ,\
 sonarRanges[10], \
 sonarRanges[11], sonarRanges[12], sonarRanges[13], \
 sonarRanges[14], sonarRanges[15], sonarRanges[16], \
 sonarRanges[17], sonarRanges[18], sonarRanges[19], newestSonar);

 #endif
 waitfor(DelayMs(2000));
 }

 costate
 {
 getIRVolts();
 waitfor(DelayMs(80)); //IR sensors need 40 to 60 ms to update

 }

 costate // get wheel speeds for dr
 {

 wheel1 = 2 * wheel(0xD0, 0x01);// mult. reported speed by 2 for Hz
 waitfor(DelayMs(1)); // get wheel speed in Hz for each wheel
 wheel2= 2 * wheel(0xD0, 0x02);
 waitfor(DelayMs(1));
 wheel3 = 2 * wheel(0xD0, 0x03);
 obsOmega1 = wheel1 * 2 * PI/100; // make wheel speed in rad/s
 if(dir1 == REV_DIR)
 obsOmega1 = -1 * obsOmega1;
 obsOmega2 = wheel2 * 2 * PI /100; //negative rotational speeds if
 if(dir2 == REV_DIR) //wheels rotating in rev. direction
 obsOmega2 = -1 * obsOmega2;
 obsOmega3 = wheel3 * 2 * PI /100;
 if(dir3 == REV_DIR)
 obsOmega3 = -1 * obsOmega3;
 #if DEBUGDR
 printf("wheel speeds 1,2,3: %.4f %.4f %.4f \n", \
 obsOmega1, obsOmega2, obsOmega3);
 #endif
 calcVeloRobotFrame(obsOmega1, obsOmega2, obsOmega3);
 newDR = TRUE; // flag set so dr costate will activate

 // if test the wheels and they're not spinning, robot is stopped
 if(fabs(obsOmega1) < 0.1 && fabs(obsOmega2) < 0.1 && \
 fabs(obsOmega3) < 0.1)
 robotStopped = TRUE;
 else
 if(robotNotRotating)
 robotStopped = FALSE;
 waitfor(DelayMs(250)); // wheel sensor updates every 250 ms
 }

 costate // dead reackon nav
 {
 if(newDR)
 {
 calcVeloEarthFrame();

 dr(); // dead reckon the position
 newDR = FALSE; // clear the flag 'cuz we've done
 } //the DR on existing data

 186

 }

 costate //do navigation costate
 {
 if(!manual_control_flag && !closeContact)
 {
 navigation(current_wp_count -1, current_wp_count);

 }
 waitfor(DelayMs(2011)); //do navigation every 2 seconds
 }
 costate //fake the GPS for GUI
 {

 makeFakeGPSpos();
 #if DEBUGDR
 printf("\nvE %f vN %f DR Posit N %ld DR Posit E %ld\n", \
 vE[0], vN[0] , DRpos.cm_N, DRpos.cm_E);
 #endif
 waitfor(DelayMs(919));
 }

 costate
 {
 waitfor((imuChar = serFgetc()) != -1 && imuChar == '#');
 waitfor(DelayMs(10));
 if(!getImu()) //update if not error
 {
 newImu = TRUE;
 if(robotStopped)
 zRotation[0] = 0; //if observe no wheel speed data,
 //robot isn't rotating

 if(fabs(zRotation[0]) > IMUROTLIMIT) //ignore rotation if too small
 {
 imuHeading = imuHeading + zRotation[0] * \
 ((float) (imuTimes[0] - imuTimes[1])/1000);
 }
 else
 {
 zRotation[0] = 0;
 }
 serFrdFlush();

 }
 waitfor(DelayMs(100));

 }

 costate //maintain heading
 { //do this if want to maintain heading
 if((holdHeading && (fabs(imuHeading) > IMUHEADLIMIT) \
 && !robotStopped && robotNotRotating))

 {
 //superimpose rotation onto existing velocity vector
 //add or subtract voltage from ALL motors' speeds
 //to spin the robot R or L to counteract any unwanted
 //chassis rotational velocity

 187

 //solve for integral imuHeading error
 imuIntegralHdgErr = 0;

 #if DEBUGDR
 printf("current Hdg %d Command Hdg %d\n", heading, cmdHeading);
 #endif
 for(m = 0; m < 6; m++)
 {
 if(zRotation[m] < 999) //include the value if not error
value
 {
 imuIntegralHdgErr = imuIntegralHdgErr + \
 zRotation[m] * (imuTimes[m] - imuTimes[m+1]);
 }
 }

 // use IMU for heading feedback loop
 chassisOmega = - KAPPA_D * zRotation[0] - KAPPA_P * imuHeading;
 #if DEBUGDR
 printf("zRotation %.5f \tIMU Hdg %.5f\n", zRotation[0] ,\
 imuHeading);
 #endif
 vector(); //update the robot's motion vector

 }//end if holdHeading
 newImu = FALSE;
 waitfor(newImu); //do updates about 10 times per sec

 }//end costate

 costate //manual control costate calls manual_control() to call
control()
 {
 waitfor(CheckDataPresent(&ManCtrlChan));
 manual_control_flag = 1;
 manual_control();
 waitfor(DelayMs(139));
 }
 costate //watchdog for stuck motionless
 {
 if(!manual_control_flag && v != 0 && (obsOmega1< STUCKLIMIT)\
 && (obsOmega2 < STUCKLIMIT) && (obsOmega3 < STUCKLIMIT))
 {
 //start a timer
 watchDogTime = MS_TIMER;
 waitfor(DelayMs(TIMELIM));
 //recheck after TIMELIM are we still stuck?
 if(v != 0 && (obsOmega1< STUCKLIMIT) && (obsOmega2 < STUCKLIMIT) \
 && (obsOmega3 < STUCKLIMIT))
 {

 //if still stuck then do this
 stopMotors();
 theta = rad(deg(theta)- 180); //go reverse direction
 v = CRAWLSPEED;

 chassisOmega = 0;
 cmdHeading = heading ; //convert course to 1 byte int 0 to 255
 imuHeading = 0; //reset this to zero for the next leg
 vector(); //vector robot off in the 300 degree direction

 188

 msDelay(300); //short duration try to back up
 stopMotors();

 waitfor(DelayMs(100)); //wait for motors to stop
 spinDelay = doRandSpin();
 waitfor(DelayMs(spinDelay));
 stopMotors();

 while((irSensorVal = irCloseContact()) && irSensorVal >=32
)
 {
 // find a random value of milliseconds between 900 to 1900
 spinDelay = doRandSpin();

 waitfor(DelayMs(spinDelay));
 stopMotors();
 waitfor(DelayMs(1033));// delay about 1s so IR can check path
 // and allow user to send manual commands
 }
 v = CRAWLSPEED; //if clear then go again, but go slow

 theta = rad(300); // set the vector to 060 degrees
 chassisOmega = 0;
 cmdHeading = heading ; //convert course to 1 byte int. 0 to 255
 imuHeading = 0; //reset this to zero for the next leg
 vector(); //vector robot off in the 300 degree direction
 watchDogTime = MS_TIMER;
 }
 else
 watchDogTime = MS_TIMER; //new time cuz not stuck
 }
 waitfor(DelayMs(5000)); //check every 5 sec
 }//costate
 } //while

} //main

 189

LIST OF REFERENCES

[1] Department of Defense (2004, Nov. 15). Photo Archive- U.S. Department of
Defense Transformation Official Website. Available:
http://www.defenselink.mil/transformation/images/photos/2004-11/Hi-
Res/041103-N-4614W-040.jpg, Nov. 2007.

[2] Department of the Air Force (2004, Nov. 15). ‘Reaper’ moniker given to MQ-9
unmanned aerial vehicle. Available:
http://www.af.mil/news/story.asp?id=123027012&page=2, Nov. 2007.

[3] Department of the Air Force (2007, Mar. 14). First MQ-9 Reaper makes its home
on the Nevada flightline. Available:
http://www.af.mil/shared/media/photodb/photos/070313-F-0782R-115.jpg, Nov.
2007.

[4] Defense Advanced Research Projects Agency (2007, Nov. 4). Overview.
Available: http//www.darpa.mil/grandchallenge/overview.asp, Nov. 2007.

[5] Defense Advanced Research Projects Agency (2007, Nov. 4). D2X_1328.jpg
1200x797 pixels. Available:
http://www.darpa.mil/grandchallenge/images/photos/11_4_07/D2X_1328.jpg,
Nov. 2007.

[6] Department of the Navy (2007). 2007 Engine Cost Message. Available:
http://safetycenter.navy.mil/aviation/maintenance/downloads/2007_engine_cost_
message.txt, Oct. 2007.

[7] Steber, Dan. (2007, Summer). Fight FOD to Save Lives. Mech. [Online].
Available:
http://safetycenter.navy.mil/media/mech/issues/summer07/fightfod.htm, Oct.
2007.

[8] Department of the Navy (2002, Nov. 7). Navy NewsStand- Eye on the Fleet-
Windows Internet Explorer. Available:
http://www.navy.mil/view_single.asp?id=3256, Nov. 2007.

[9] A. Chicoine, “The Naval Postgraduate School’s Small Robotics Technology
Initiative: Initial Platform Integration and Testing,” M.S. thesis. Dept. Physics.,
Naval Postgraduate School., Monterey, CA, 2001.

[10] B. Miller, “Improvised Explosive Devise Placement Detection from a Semi-
autonomous Ground Vehicle,” M.S. thesis. Dept. Physics., Naval Postgraduate
School., Monterey, CA, 2006.

 190

[11] J. Herkamp, “Deployment of Shaped Charges by a Semi-autonomous Ground
Vehicle,” M.S. thesis. Dept. Physics., Naval Postgraduate School., Monterey,
CA, 2007.

[12] H. Kitagawa, T. Kobayashi, T. Beppu, K. Terashima: “Semi-Autonomous
Obstacle Avoidance of Omnidirectional Wheelchair by Joystick Impedance
Control,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp
2148-2153, 2001.

[13] O. Purwin, R. D’Andrea. “Cornell Big Red 2003,” in: D. Polani, A. Bonarini, B.
Browning, K. Yoshida (Eds), Robocup 2003: Robot Soccer World Cup VII,
Lecture Notes in Artificial Intelligence, Springer, Berlin 2003.

[14] Wikimedia Foundation, Inc. (2007, Nov. 28). Holonomic-Wikipedia. Available:
http://en.wikipedia.org/wiki/Holonomic, Nov. 2007.

[15] S. Dickerson, B. Lapin. “Control of an Omni-directional Robotic Vehicle with
Mechanum Wheels,” in IEEE, pp 0323-0328, 1991.

[16] T. Kalmár-Nagy, P. Ganguly, R. D’Andrea. Real-time trajectory generation for
omnidirectional vehicles. in Proc. 2002 American Control Conf. Anchorage, AK,
2002, pp 286-291.

[17] R. Rojas, A. Gloye Förster. “Holonomic Control of a robot with an
omnidirectional drive,” KI- Künstliche Intelligenz, vol. 20, nr. 2, BöttcherIT
Verlag, 2006.

[18] Kornylak Corp. (2007). Transwheel Executive Summary. Available:
http://www.motionsavers.com/Kornylak/?gclid=CLjOmJDxgpACFRIQYQodqSg
5rw, Nov. 2007.

[19] SuperDroid Robots (2006). IG32 24VDC 195 RPM Gear Motor. Available:
http://www.superdroidrobots.com/product_info/IG32GMa.gif, Oct. 2007.

[20] LMD18200 3A, 55V H-Bridge, National Semiconductor, 2005.

[21] C. Pemma. Pulse Width Modulation. Available:
http://www.cpemma.co.uk/pwm.html, Aug. 2007.

[22] Total Micro Customer Support, private communication, July 2007.

[23] Total Micro (2003). PowerStation-100. Available: http://www.total-
micro.com/specifications/POWERSTATION100.pdf, Nov. 2007.

[24] Acroname Robotics (2006, Sept. 6). Sonar Ranging Primer. Available:
http://www.acroname.com/robotics/info/articles/sonar/sonar.html, Nov. 2007.

 191

[25] A. Pressman, “Fundamental Switching Regulators- Buck, Boost, and Inverter
Topologies,” in Switching Power Supply Design, 2nd ed. New York: McGraw
Hill Professional, 1998, pp 3-21.

[26] P. Scherz, “Electronic Circuit Components,” in Practical Electronics for
Inventors, 2nd ed. New York: McGraw Hill, 2007, pp 382.

[27] D. Schelle, J. Castorena (2006, June). Buck-Converter Design Demystified.
Power Electronics Technology [Online]. Available:
http://powerelectronics.com/power_systems/dc_dc_converters/power_buckconver
ter_design_demystified/, Oct. 2007.

[28] Hyun Il Jun, “Implementation and Testing of a Robotic Arm in an Autonomous
Vehicle,” M.S. thesis. Dept. Physics., Naval Postgraduate School., Monterey,
CA, 2007.

[29] Rabbit Semiconductor (2007). Wolf (BL2600) C-Programmable Single-Board
Computer with Ethernet User’s Manual. Available:
http://www.rabbitsemiconductor.com/documentation/docs/manuals/BL2600/BL2
600UM.pdf, Nov. 2007.

[30] PIC16F631/677/685/687/689/690 Data Sheet, Microchip Technology Inc., 2007.

[31] GP2Y0A02YK Long Distance Measuring Sensor, SHARP.

[32] J. Borenstein, H.R. Everett, L. Feng, “Sensors for Map-Based Positioning,” in
Navigating Mobile Robots, Wellesley, MA: A K Peters, Ltd., 1996, pp 69-71.

[33] A. Cao, J. Borenstein, “Experimental Characterization of Polaroid Ultrasonic
Sensors in Single and Phased Array Configuration,” in Proc. of the UGV
Technology Conf. at the 2002 SPIE AeroSense Symp., Orlando, FL, pp. 1-5, 2002.

[34] K. Volland, B. Bateman, B. Kerstens, A. Lucrecio, “SE4015 Winter 2007 Class
Report on the F.B. Autonomous Vehicle,” Mar. 2007, unpublished.

[35] Hobbico, Inc (2007). Futaba S3003 Servo Standard. Available:
http://www.gpdealera.com/cgi-bin/wgainf100p.pgm?I=FUTM0031, Nov. 2007.

[36] Photoreflector P5587, P5588, Hamamatsu Photonics, 2001.

[37] Falcon/MX 6DOF Sensor Module Preliminary Quick Start Guide, O-Navi, LLC,
2004 Dec.

[38] M. Gasperi (2007). PIC NXT Interface. Available:
http://www.extremenxt.com/picnxt.html, Aug. 2007.

[39] The I2C-Bus Specification, version 2.1, Philips Semiconductors, Jan. 2000.

 192

[40] Devantech Ltd. (2007). CMPS03 documentation. Available: http://www.robot-
electronics.co.uk/htm/cmps3tech.htm, Nov. 2007.

[41] C. Le, J. Gamble, Z. Cole, “SE4015 Summer 2006: ‘aka Ham Sandwich’,” 2006,
unpublished.

[42] J. Borenstein, Y. Koren, “Real-time Obstacle Avoidance for Fast Mobile Robots,”
IEEE Trans. on Systems, Man, and Cybernetics, vol. 19, no. 5, pp. 1179-1187,
Sept./Oct. 1989.

[43] J. Borenstein, Y. Koren, “The Vector Field Histogram- Fast Obstacle Avoidance
for Mobile Robots,” IEEE Journal of Robotics and Automation, vol. 7, no. 3, pp.
278-288, June 1991.

[44] The MathWorks, Inc. (2007). Video and Image Processing Blockset- Tracking
Cars Using Optical Flow Demo. Available:
http://www.mathworks.com/products/viprocessing/demos.html?file=/products/de
mos/shipping/vipblks/viptrafficof.html#1, Nov. 2007.

[45] A. Shimada, S. Yajima, P. Viboonchaicheep, K. Samura, “Mecanum-wheel
Vehicle Systems Based on Position Corrective Control,” in Proc. IECON 2005
31st Annu. Conf. of IEEE pp. 2077-2082.

 193

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Richard Harkins
Department of Physics
Naval Postgraduate School
Monterey, California

4. Professor Peter Crooker
Department of Physics
Naval Postgraduate School
Monterey, California

5. Physics Department
Naval Postgraduate School
Monterey, California

